
htmap Documentation
Release 0.6.1

CHTC

Jan 08, 2024





GETTING STARTED

1 Installation 3

2 Tutorials 5
2.1 First Steps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Basic Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Working with Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 Map Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 Advanced Mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.6 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.7 Advanced Tutorials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Using HTCondor with HTMap 57
3.1 Component and Job States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Requesting Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.3 GPUs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.4 Command Line Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Tips and Tricks 61
4.1 Separate Job Submission/Monitoring/Collection . . . . . . . . . . . . . . . . . . . . . . . 61
4.2 Use the CLI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
4.3 Conditional Execution on Cluster vs. Submit . . . . . . . . . . . . . . . . . . . . . . . . . 62
4.4 Functional programming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 FAQ 65
5.1 How do I abort a job? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.2 How do I only process completed jobs? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
5.3 Is it possible to use Dask with HTCondor? How does it compare with HTMap? . . . . . . . 65
5.4 I’m getting a weird error from cloudpickle.load? . . . . . . . . . . . . . . . . . . . . . 66
5.5 I’m getting an error about a job being held. What should I do? . . . . . . . . . . . . . . . . 66

6 API Reference 67
6.1 Tags and Map Persistence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.2 Mapping Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3 Map Builder . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
6.4 MappedFunction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
6.5 Map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

i



6.6 Error Handling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.7 MapOptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.8 File Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
6.9 Checkpointing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.10 Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
6.11 Delivery Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
6.12 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
6.13 Logging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.14 Exceptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.15 Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 CLI Reference 95
7.1 htmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

8 Settings 111
8.1 Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

9 Dependency Management 115
9.1 Run Inside a Docker Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
9.2 Run Inside a Singularity Container . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
9.3 Run With a Shared Python Installation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.4 Assume Dependencies are Present . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.5 Transplant Existing Python Install . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10 Version History 121
10.1 v0.6.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.2 v0.6.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
10.3 v0.5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
10.4 v0.5.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
10.5 v0.4.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.6 v0.4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
10.7 v0.4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
10.8 v0.4.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.9 v0.4.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
10.10 v0.3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.11 v0.3.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
10.12 v0.3.0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

11 Contributing and Developing 131
11.1 HTMap Innards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
11.2 Development Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 135
11.3 How to Release a New HTMap Version . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137

Python Module Index 139

Index 141

ii



htmap Documentation, Release 0.6.1

HTMap is a library that wraps the process of mapping Python function calls out to an HTCondor pool. It
provides tools for submitting, managing, and processing the output of arbitrary functions.

Our goal is to provide as transparent an interface as possible to high-throughput computing resources so that
you can spend more time thinking about your own code, and less about how to get it running on a cluster.

Running a map over a Python function is as easy as

import htmap

def double(x):
return 2 * x

doubled = list(htmap.map(double, range(10)))
print(doubled)
# [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

If you’re just getting started, jump into the first tutorial: First Steps.

Happy mapping!

Installation
Installing HTMap

Note: Bug reports and feature requests should go on our GitHub issue tracker.

Tutorials
Tutorials on using HTMap.

Dependency Management
Information about how to manage your what your code depends on (e.g., other Python packages).

API Reference
Public API documentation.

CLI Reference
Use of the HTMap CLI.

Using HTCondor with HTMap
Tips on using HTMap with HTCondor

Tips and Tricks
Useful tips & tricks on the API.

FAQ
These questions are asked, sometimes frequently.

Settings
Documentation for the various settings.

GETTING STARTED 1

https://htcondor.readthedocs.io/
https://github.com/htcondor/htmap/issues


htmap Documentation, Release 0.6.1

Version History
New features, bug fixes, and known issues by version.

Contributing and Developing
How to contribute to HTMap, how to set up a development environment, how HTMap works under
the hood, etc.

2 GETTING STARTED



CHAPTER

ONE

INSTALLATION

• On Unix/Linux systems, running pip install htmap from the command line should suffice.

• On Windows, there’s an added dependency of HTCondor (to get access to the HTCondor Python
bindings). After that, use the pip install --no-deps.

The introductory tutorials can be run on Binder, requiring no setup on your part.

Basic usage only requires installation of HTMap “submit-side”. Anything more advanced like checkpointing
or output file transfers will require installation on the execute nodes. For more information and to ensure your
code will run correctly execute-side see Dependency Management.

You may need to append --user to the pip command if you do not have permission to install packages
directly into the Python installation you are using. Recent versions of pip will do this automatically when
necessary.

3



htmap Documentation, Release 0.6.1

4 Chapter 1. Installation



CHAPTER

TWO

TUTORIALS

Attention: The most convenient way to go through these tutorials is through Binder, which requires no
setup on your part:

First Steps
If this is your first time using HTMap, start here!

Basic Mapping
An introduction to the basics of HTMap.

Working with Files
Sending additional files with your maps.

Map Options
How to tell the pool what to do with your map.

Advanced Mapping
More (and better) ways to create maps.

Error Handling
What do when something goes wrong.

2.1 First Steps

2.1.1 Setup

The fastest and easiest way to make sure you have a working setup (as described below) is to go through
these tutorials on Binder

The second-easiest way is to run the tutorials in a Docker container on your computer. Run

docker run -p 8888:8888 htcondor/htmap-tutorials

and follow the instructions it gives you to get into the Jupyter environment. Then go to tutorials/
first-steps.ipynb in the file browser and open it to get back to this point.

5

https://mybinder.org/v2/gh/htcondor/htmap/master?urlpath=lab%2Ftree%2Ffirst-steps.ipynb
https://mybinder.org/v2/gh/htcondor/htmap/master?urlpath=lab%2Ftree%2Ffirst-steps.ipynb


htmap Documentation, Release 0.6.1

Alternatively, you might want to immediately start running HTMap on your HTCondor pool. This tutorial
assumes that you’ve already installed HTMap on your HTCondor pool’s submit node, or have access to
HTMap through a JupyterHub server connected to an HTCondor pool or similar. See How do I install
HTMap? for details!

This tutorial also assumes that you’re working in a Jupyter Notebook. It will work just as well in the Python
REPL. Later, once you get a hang things, you’ll be ready to use HTMap in scripts as well. Either way, you’ll
need to be on a computer that can submit jobs to an HTCondor pool.

This tutorial assumes that you have already set up your dependency management, as described in Dependency
Management. If your HTCondor pool supports Docker, you’ll be good to go with the default settings.

The tutorials in this series are written inside Juypter Notebooks. If you click the “View page source” link in
the upper right corner, you’ll be able to grab the raw .ipynb file yourself and step through it along with the
tutorial.

2.1.2 The Problem

Suppose you’ve been given the task of writing a function that doubles numbers, like this:

[1]: def double(x):
return 2 * x

If you want to double a list of numbers, you might do something like

[2]: doubled = [double(x) for x in range(10)]
print(doubled)

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

or we can use the built-in function map(), which applies a function to each element of an iterable (like a list):

[3]: mapped = map(double, range(10))
print(mapped)
doubled = list(mapped)
print(doubled)

<map object at 0x7f7ae8393390>
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

In both cases, doubled is the list [0, 2, 4, ...]. The reason we need the list call is that map actually
returns an iterator over the results, not the results themselves. So you need to iterate over it to get the output,
which is what list does: iterate over its input and put the elements in a list.

Now suppose that, for some reason, you want to double a lot of numbers. So many numbers that you can’t
bear to do all the work on your own computer. It takes days to multiply all the numbers, and if your program
crashes halfway through, you lose all of of your progress and have to start over. You’re losing sleep, and your
boss is breathing down your neck because they need those numbers doubled now.

Luckily, you remember that you have access to an HTCondor high-throughput computing pool. Since each of
your function calls is isolated from all the others, the computers in the pool don’t need to talk to each other at

6 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

all, and you can achieve a huge speedup. The pool can run your code on hundreds or thousands of computers
simultaneously, storing the inputs and outputs for you and recovering from individual errors gracefully. It’s
the perfect solution.

The problem is: how do you get your code running in the pool?

2.1.3 The Solution

With HTMap, it’s like this:

[4]: import htmap

mapped = htmap.map(double, range(10))
print(mapped)
doubled = list(mapped)
print(doubled)

Created map super-busy-dog with 10 components
Map(tag = super-busy-dog)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

It may take some time for the second print to run. During that time, the individual components of your
map are being run out on the cluster on execute nodes. Once they all finish, you’ll get the list of numbers
back. As you can see, the output is identical to what you would get from running the function locally.

In the next tutorial we’ll start digging into the extra features that HTMap provides on top of this basic func-
tionality.

2.2 Basic Mapping

2.2.1 Tags

In the previous tutorial, we used HTMap like this:

[1]: import htmap

def double(x):
return 2 * x

[2]: mapped = htmap.map(double, range(10))
print(mapped)
doubled = list(mapped)
print(doubled)

2.2. Basic Mapping 7

https://mybinder.org/v2/gh/htcondor/htmap/master?urlpath=lab%2Ftree%2Fbasic-mapping.ipynb


htmap Documentation, Release 0.6.1

Created map dark-puny-robe with 10 components
Map(tag = dark-puny-robe)
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

In particular, we used the htmap.map function to create our map. This function creates an object that behaves
a lot like the iterator returned by the built-in map function. To get our output, we iterated over it using list.

You may have noticed that the map has a tag associated with it. HTMap generated this tag for us because
we didn’t provide one, and because we didn’t provide one, marked the map as transient, as opposed to
persistent. Transient maps are for quick tests where we don’t care too much about organization. Persistent
maps are for longer-running maps where we want to keep our work organized by giving things real names.
If you don’t plan on using your map for more than one session, you can probably get away with a transient
map. If you’re going to step away from the computer and come back, we recommend giving it a real tag.

The map we created above is transient:

[3]: print(mapped.is_transient)

True

To create a persistent map, we need to give our map our map a tag:

[4]: another_map = htmap.map(double, range(10), tag = 'dbl')
print(another_map)
print(another_map.is_transient)

Created map dbl with 10 components
Map(tag = dbl)
False

We can also “retag” a map to give it a new tag. If you tag a transient map, it becomes persistent.

[5]: mapped.retag('a-new-tag')
print(mapped)
print(mapped.is_transient)

Map(tag = a-new-tag)
False

2.2.2 Working with Maps

The object that was returned by htmap.map is a htmap.Map. It gives us a window into the map as it is running,
and lets us use the output once the map is finished.

For example, we can print the status of the map:

[6]: stringified = htmap.map(str, range(10), tag = 'str')
print(stringified.status())

8 Chapter 2. Tutorials

https://htmap.readthedocs.io/en/stable/api.html#htmap.map
https://docs.python.org/3/library/functions.html#map
https://htmap.readthedocs.io/en/stable/api.html#htmap.map
https://htmap.readthedocs.io/en/stable/api.html#htmap.Map


htmap Documentation, Release 0.6.1

Created map str with 10 components
Map str (10 components): HELD = 0 | ERRORED = 0 | IDLE = 10 | RUNNING = 0 |␣
→˓COMPLETED = 0

We can wait for the map to finish:

[7]: stringified.wait(show_progress_bar = True)

str: 100%|##########| 10/10 [00:09<00:00, 1.11component/s]

There are many ways to iterate over maps:

[8]: print(list(stringified))

for d in stringified:
print(d)

['0', '1', '2', '3', '4', '5', '6', '7', '8', '9']
0
1
2
3
4
5
6
7
8
9

If we ever lose our reference to it, we can grab a new reference to it using htmap.load, giving it the tag of the
map we want:

[9]: new_ref = htmap.load('str')

print(new_ref)
print(new_ref == stringified)
print(new_ref is stringified) # maps are singletons

Map(tag = str)
True
True

Maps can be recovered from an entirely different Python interpreter session as well. Suppose you close
Python and go on vacation. You come back and you want to look at your map again, but you’ve forgotten
what you called it. Just ask HTMap for a list of your tags:

[10]: print(htmap.get_tags())

('dbl', 'str', 'a-new-tag')

2.2. Basic Mapping 9

https://htmap.readthedocs.io/en/stable/api.html#htmap.load


htmap Documentation, Release 0.6.1

Ok, well, technically it was a tuple, but we’ll have to live with it.

HTMap can also print a pretty table showing the status of your maps:

[11]: htmap.map(str, range(5)) # new transient map
print(htmap.status())

Created map breezy-happy-hand with 5 components
Tag HELD ERRORED IDLE RUNNING COMPLETED Local Data Max␣
→˓Memory Max Runtime Total Runtime
a-new-tag 0 0 0 0 10 63.9 KB 41.0␣
→˓MB 0:00:00 0:00:00
dbl 0 0 0 0 10 63.9 KB 41.0␣
→˓MB 0:00:00 0:00:00
str 0 0 0 0 10 63.5 KB 41.0␣
→˓MB 0:00:00 0:00:00
* breezy-happy-hand 0 0 5 0 0 19.8 KB 0.0␣
→˓B 0:00:00 0:00:00

Note that transient maps have a * in front of their tags.

The status message tells us about how many components of our map are in each of the five most common
component states:

• Idle - component is waiting to run

• Running - component is currently executing remotely

• Completed - component is finished executing and output is available

• Held - HTCondor has noticed a problem with the component and is not letting it run

• Errored - there was an error in your code, and HTMap has brought back error information

The status of each component of your map is available using the map attribute component_statuses:

[12]: print(new_ref.component_statuses)

[<ComponentStatus.COMPLETED: 'COMPLETED'>, <ComponentStatus.COMPLETED: 'COMPLETED
→˓'>, <ComponentStatus.COMPLETED: 'COMPLETED'>, <ComponentStatus.COMPLETED:
→˓'COMPLETED'>, <ComponentStatus.COMPLETED: 'COMPLETED'>, <ComponentStatus.
→˓COMPLETED: 'COMPLETED'>, <ComponentStatus.COMPLETED: 'COMPLETED'>,
→˓<ComponentStatus.COMPLETED: 'COMPLETED'>, <ComponentStatus.COMPLETED:
→˓'COMPLETED'>, <ComponentStatus.COMPLETED: 'COMPLETED'>]

We’ll discuss what to do about held and errored components and how to interact with component statuses in
the Error Handling tutorial.

Tags are unique: if we try to create another map with a tag we’ve already used, it will fail:

[13]: new_map = htmap.map(double, range(10), tag = 'dbl')

---------------------------------------------------------------------------
TagAlreadyExists Traceback (most recent call last)

(continues on next page)

10 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

<ipython-input-13-397c48e54a47> in <module>
----> 1 new_map = htmap.map(double, range(10), tag = 'dbl')

~/htmap/htmap/mapping.py in map(func, args, map_options, tag)
86 func,
87 args_and_kwargs,

---> 88 map_options = map_options,
89 )
90

~/htmap/htmap/mapping.py in create_map(tag, func, args_and_kwargs, map_options)
276
277 tags.raise_if_tag_is_invalid(tag)

--> 278 tags.raise_if_tag_already_exists(tag)
279
280 logger.debug(f'Creating map {tag} ...')

~/htmap/htmap/tags.py in raise_if_tag_already_exists(tag)
59 """Raise a :class:`htmap.exceptions.TagAlreadyExists` if the ``tag``␣

→˓already exists."""
60 if tag_file_path(tag).exists():

---> 61 raise exceptions.TagAlreadyExists(f'The requested tag "{tag}"␣
→˓already exists. Load the Map with htmap.load("{tag}"), or remove it using␣
→˓htmap.remove("{tag}").')

62
63

TagAlreadyExists: The requested tag "dbl" already exists. Load the Map with␣
→˓htmap.load("dbl"), or remove it using htmap.remove("dbl").

As the error message indicates, if we want to re-use the tag dbl, we need to remove the old map first:

[14]: old_map = htmap.load('dbl')
old_map.remove()

htmap.Map.remove deletes all traces of the map. It can never be recovered. Be careful when using it!

The module-level shortcut htmap.remove lets you skip the intermediate step of getting the actual Map, if you
don’t already have it.

Now we can re-use the map ID:

[15]: new_map = htmap.map(double, range(10), tag = 'dbl')
new_map.wait(show_progress_bar = True)
print(list(new_map))

dbl: 0%| | 0/10 [00:00<?, ?component/s]

2.2. Basic Mapping 11

https://htmap.readthedocs.io/en/stable/api.html#htmap.Map.remove
https://htmap.readthedocs.io/en/stable/api.html#htmap.remove


htmap Documentation, Release 0.6.1

Created map dbl with 10 components

dbl: 100%|##########| 10/10 [00:07<00:00, 1.42component/s]

[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

2.2.3 Map Builders

So far we’ve been avoiding any functions that needed to be mapped over keyword arguments, or that had
more than one positional argument. htmap.map is not really the ideal tool for working with functions that
have more than one argument, and it does not support varying more than one argument at all.

A much more ergonomic way to build up a complex map is a map builder. A map builder lets you build a
map via individual function calls. Call htmap.build_map as a context manager to get the builder, then call
the builder as if it were the mapped function itself:

[16]: def power(base, exponent):
return base ** exponent

with htmap.build_map(power) as pow_builder:
for base in range(1, 5): # bases are 1, 2, 3, 4

for exponent in range(1, 4): # exponents are 1, 2, 3
pow_builder(base, exponent)

powered = pow_builder.map
print(list(powered)) # 1^1, 1^2, 1^3, 2^1, 2^2, 2^3, 3^1 ...

Created map harsh-happy-ring with 12 components
[1, 1, 1, 2, 4, 8, 3, 9, 27, 4, 16, 64]

The map builder catches the function calls and turns them into a map. The map is created when the with
block ends, at which point you can grab the actual htmap.Map from the builder’s map attribute.

In the next tutorial, we’ll see how to tell HTMap to bring a local file along to the execute node.

2.3 Working with Files

High-throughput computing often involves analyzing data stored in files. For many simple cases, HTMap
can automatically work with files that you specify as arguments of your function without (much) special
treatment.

Let’s start with “Hello world!” example:

12 Chapter 2. Tutorials

https://htmap.readthedocs.io/en/stable/api.html#htmap.build_map
https://htmap.readthedocs.io/en/stable/api.html#htmap.Map
https://mybinder.org/v2/gh/htcondor/htmap/master?urlpath=lab%2Ftree%2Fworking-with-files.ipynb


htmap Documentation, Release 0.6.1

[1]: from pathlib import Path

def read_file(path: Path):
return path.read_text()

This function takes in a pathlib.Path, reads it, and returns its contents. Let’s make a file and see how it works:

[2]: hi_path = Path.cwd() / 'hi.txt'
print(hi_path)
hi_path.write_text('Hello world!')

/home/jovyan/tutorials/hi.txt

[2]: 12

[3]: print(read_file(hi_path))

Hello world!

(pathlib has a steeper learning curve than os.path, but it’s well worth the effort!)

Now, let’s start mapping. In this case, the map call is barely different than the original function call, but
we need to set up the inputs correctly. The trick is that, instead of a pathlib.Path, we need to use a
htmap.TransferPath. htmap.TransferPath is a drop-in replacement for pathlib.Path in every way, ex-
cept for HTMap’s special treatment of it.

HTMap will detect that we used an htmap.TransferPath in a map as long as it is an argument or keyword
argument of the function, or stored in a primitive container (list, dict, set, tuples) and automatically
transfer the named file to wherever the function executes.

[4]: import htmap

bye_path = htmap.TransferPath.cwd() / 'bye.txt'
bye_path.write_text('Have a nice day!')

[4]: 16

[5]: map = htmap.map(read_file, [bye_path])
print(map.get(0)) # map.get will wait until the result is ready

Created map puny-thin-echo with 1 components
Have a nice day!

2.3. Working with Files 13

https://docs.python.org/3/library/pathlib.html
https://htmap.readthedocs.io/en/stable/api.html#htmap.TransferPath


htmap Documentation, Release 0.6.1

2.3.1 Multiple Files

To see how we can transfer a container full of files, let’s write a simple clone of the unix cat program,
which concatenates files. It takes a single argument which is a list of files to be concatenated, and returns the
concatenated files as a string.

[6]: def cat(files):
file_contents = (file.read_text() for file in files)
return ''.join(file_contents)

Let’s write some test files. . .

[7]: cwd = htmap.TransferPath.cwd()
paths = [

cwd / 'start.txt',
cwd / 'middle.txt',
cwd / 'end.txt',

]
parts = [

'The quick brown ',
'fox jumps over ',
'the lazy dog!',

]
for path, part in zip(paths, parts):

path.write_text(part)

. . . and run a map!

[8]: m = htmap.map(cat, [paths]) # this creates a single map component with the list␣
→˓of paths as the argument
print(m.get(0))

Created map red-bland-tub with 1 components
The quick brown fox jumps over the lazy dog!

If the “output” of your map function needs to be a file instead of a Python object (or you produce files that
you need back submit-side for whatever reason), you’ll want to look at the Output Files recipe once you’re
done with the tutorials.

In the next tutorial we’ll learn how to tell HTCondor about what resources our map components require, as
well as another HTCondor configuration they need.

14 Chapter 2. Tutorials

https://htmap.readthedocs.io/en/stable/recipes/output-files.html


htmap Documentation, Release 0.6.1

2.4 Map Options

2.4.1 Requesting Resources

The most common kind of map option you’ll probably need to work with are the ones for requests resources.
HTMap makes fairly conservative default choices about the resources required by your map components. If
your function needs a lot of resources, such as memory or disk space, you will need to communicate this to
HTMap.

Suppose we need to transfer a huge input file that we need to read into memory, so we need a lot of memory
and disk space available on the execute node. We’ll request 200 MB of RAM, 10 GB of disk space, and send
our input file.

[1]: from pathlib import Path
import htmap

def read_huge_file(file):
contents = Path(file).read_text()

# do stuff

return contents # we'll just return the contents here, but imagine this is␣
→˓the result of processing

[2]: huge_file = htmap.TransferPath.cwd() / 'huge_file.txt'
huge_file.write_text('only a few words, but use your imagination')

[2]: 42

(Don’t panic! write_text() returns the number of bytes written.)

And here’s our map call:

[3]: processed = htmap.map(
read_huge_file,
[huge_file],
map_options = htmap.MapOptions(

request_memory = '100MB',
request_disk = '1GB',

),
)

print(processed.get(0))

Created map breezy-thick-beak with 1 components
only a few words, but use your imagination

2.4. Map Options 15

https://mybinder.org/v2/gh/htcondor/htmap/master?urlpath=lab%2Ftree%2Fmap-options.ipynb


htmap Documentation, Release 0.6.1

request_memory and request_disk were passed as single strings. Since they are single strings, they will
be treated as fixed options and applied to every component. The other kind of option is variadic, which lets
you specify some option for each component of the map individually. For exampe, if we wanted a different
amount of RAM for each component, we could pass a list of strings to request_memory, one for each
component:

[4]: multiple = htmap.map(
read_huge_file,
[huge_file, huge_file, huge_file],
map_options = htmap.MapOptions(

request_memory = ['10MB', '20MB', '30MB'],
request_disk = '1GB',

),
)
print(list(multiple))

Created map tall-soft-stream with 3 components
['only a few words, but use your imagination', 'only a few words, but use your␣
→˓imagination', 'only a few words, but use your imagination']

2.4.2 The Kitchen Sink

HTMap also supports arbitrary HTCondor submit descriptors, like you would see in a submit file. Just
pass them as keyword arguments to a htmap.MapOptions, keeping in mind that you can use standard ClassAd
interpolation and that the same fixed/variadic behavior applies.

If that didn’t make sense, don’t worry about it! The whole point of HTMap is to avoid needing to know too
much about submit descriptors.

The next tutorial discusses more convenient and flexible way of defining your maps.

2.5 Advanced Mapping

So far we’ve built our maps using the top-level mapping functions. These functions are useful for tutorials,
but don’t give us the full flexibility that we might need when working with arbitrary Python functions. They’re
also sometimes inconvenient to use, especially if you don’t like typing the names of your functions over and
over. The tools described in this tutorial fix those problems.

16 Chapter 2. Tutorials

http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html
https://htmap.readthedocs.io/en/stable/api.html#htmap.MapOptions
https://mybinder.org/v2/gh/htcondor/htmap/master?urlpath=lab%2Ftree%2Fadvanced-mapping.ipynb


htmap Documentation, Release 0.6.1

2.5.1 Starmap

Back in Working With Files, we noted that htmap.map was only able to handle functions that took a single
argument. To work with a function that took two arguments, we needed to use htmap.build_map to build up
the map inside a loop.

Sometimes, you don’t want to loop. htmap.starmap provides the flexibility to completely specify the posi-
tional and keyword arguments for every component without needing an explicit for-loop.

Unfortunately, that looks like this:

[1]: import htmap

def power(x, p = 1):
return x ** p

[2]: starmap = htmap.starmap(
func = power,
args = [

(1,),
(2,),
(3,),

],
kwargs = [

{'p': 1},
{'p': 2},
{'p': 3},

],
)

print(list(starmap)) # [1, 4, 27]

Created map proper-short-stream with 3 components
[1, 4, 27]

A slightly more pleasant but less obvious way to construct the arguments would be like this:

[3]: starmap = htmap.starmap(
func = power,
args = ((x,) for x in range(1, 4)),
kwargs = ({'p': p} for p in range(1, 4)),

)

print(list(starmap)) # [1, 4, 27]

Created map light-soggy-idea with 3 components
[1, 4, 27]

But that isn’t really a huge improvement. Sometimes you’ll need the power and compactness of starmap,
but we recommend htmap.build_map for general use.

2.5. Advanced Mapping 17

https://htmap.readthedocs.io/en/stable/api.html#htmap.map
https://htmap.readthedocs.io/en/stable/api.html#htmap.build_map
https://htmap.readthedocs.io/en/stable/api.html#htmap.build_map


htmap Documentation, Release 0.6.1

2.5.2 Mapped Functions

If you’re tired of typing htmap.map all the time, create a htmap.MappedFunction using the htmap.mapped
decorator:

[4]: @htmap.mapped
def double(x):

return 2 * x

print(double)

MappedFunction(func = <function double at 0x7f750c0653b0>, map_options = {})

The resulting MappedFunction has methods that correspond to all the mapping functions, but with the
function already filled in.

For example:

[5]: doubled = double.map(range(10))

print(list(doubled)) # [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

Created map coy-burst-area with 10 components
[0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

The real utility of mapped functions is that they can carry default map options, which are inherited by any
maps created from them. For example, if we know that a certain function will always need a large amount of
memory and disk space, we can specify it for any map like this:

[6]: @htmap.mapped(
map_options = htmap.MapOptions(

request_memory = '200MB',
request_disk = '1GB',

)
)
def big_list(_):

big = list(range(1_000_000)) # imagine this is way bigger...
return big

Now our request_memory and request_disk will be set for each map, without needing to specify it in
the MapOptions of each individual map call. We can still override the setting for a certain map by manually
passing htmap.MapOptions.

See htmap.MapOptions for some notes about how these inherited map options behave.

18 Chapter 2. Tutorials

https://htmap.readthedocs.io/en/stable/api.html#htmap.build_map
https://htmap.readthedocs.io/en/stable/api.html#htmap.mapped
https://htmap.readthedocs.io/en/stable/api.html#htmap.MapOptions
https://htmap.readthedocs.io/en/stable/api.html#htmap.MapOptions


htmap Documentation, Release 0.6.1

2.5.3 Non-Primitive Function Arguments

So far we’ve mostly limited our mapped function arguments to Python primitives like integers or strings.
However, HTMap will work with almost any Python object. For example, we can use a custom class as
a function argument. Maybe we have some data on penguins, and we want to write a Penguin class to
encapsulate that data:

[7]: class Penguin:
def __init__(self, name, height, weight):

self.name = name
self.height = height
self.weight = weight

def analyze(self):
return f'{self.name} is {self.height} inches tall and weighs {self.

→˓weight} pounds'

def eat(self):
print('mmm, yummy fish')

def fly(self):
raise TypeError("penguins can't fly!")

[8]: penguins = [
Penguin('Gwendolin', height = 73, weight = 51),
Penguin('Gweniffer', height = 59, weight = 43),
Penguin('Gary', height = 64, weight = 52),

]

[9]: map = htmap.map(
lambda p: p.analyze(), # an anonmyous function; see https://docs.python.org/

→˓3/tutorial/controlflow.html#lambda-expressions
penguins,
tag = 'penguin-stats',

)

map.wait(show_progress_bar = True)

penguin-stats: 0%| | 0/3 [00:00<?, ?component/s]

Created map penguin-stats with 3 components

penguin-stats: 100%|##########| 3/3 [00:03<00:00, 1.00s/component]

[10]: for stats in map:
print(stats)

Gwendolin is 73 inches tall and weighs 51 pounds
Gweniffer is 59 inches tall and weighs 43 pounds

(continues on next page)

2.5. Advanced Mapping 19



htmap Documentation, Release 0.6.1

(continued from previous page)

Gary is 64 inches tall and weighs 52 pounds

Specialized data structures like numpy arrays and pandas dataframes can also be used as function arguments.
When in doubt, just try it!

In the next tutorial we’ll finally address the most important part of programming: what to do when things go
wrong!

2.6 Error Handling

2.6.1 Holds

In previous tutorials we mentioned that HTMap is able to track the status of your components and inform
you about something called a “hold”. A hold occurs when HTCondor notices something wrong about your
map component. Perhaps an input file is missing, or your component tried to use a file that didn’t exist.

The last one is easy to force, so let’s do it and see what happens:

[1]: import htmap

@htmap.mapped
def foo(_): # _ is a perfectly legal argument name, often used to mean "I don't␣
→˓actually use it"
return "I didn't get held!"

[2]: path = htmap.TransferPath('this-file-does-not-exist.txt')
will_get_held = foo.map(

[path],
)

Created map angry-husky-law with 1 components

We know that the component will fail, but HTMap won’t know about it until we try to look at the output:

[3]: print(will_get_held.get(0))

---------------------------------------------------------------------------
MapComponentHeld Traceback (most recent call last)
<ipython-input-3-68dfbf32680e> in <module>
----> 1 print(will_get_held.get(0))

~/htmap/htmap/maps.py in _protect(self, *args, **kwargs)
(continues on next page)

20 Chapter 2. Tutorials

https://mybinder.org/v2/gh/htcondor/htmap/master?urlpath=lab%2Ftree%2Ferror-handling.ipynb


htmap Documentation, Release 0.6.1

(continued from previous page)

43 if not self.exists:
44 raise exceptions.MapWasRemoved(f'Cannot call {method} for␣

→˓map {self.tag} because it has been removed')
---> 45 return method(self, *args, **kwargs)

46
47 return _protect

~/htmap/htmap/maps.py in get(self, component, timeout)
390 If ``None``, wait forever.
391 """

--> 392 return self._load_output(component, timeout = timeout)
393
394 def __getitem__(self, item: int) -> Any:

~/htmap/htmap/maps.py in _load_output(self, component, timeout)
341 raise IndexError(f'Tried to get output for component

→˓{component}, but map {self.tag} only has {len(self)} components')
342

--> 343 self._wait_for_component(component, timeout)
344
345 status_and_result = htio.load_objects(self._output_file_

→˓path(component))

~/htmap/htmap/maps.py in _wait_for_component(self, component, timeout)
307 break
308 elif component_status is state.ComponentStatus.HELD:

--> 309 raise exceptions.MapComponentHeld(f'Component {component}
→˓ of map {self.tag} is held: {self.holds[component]}')
310
311 if timeout is not None and (time.time() >= start_time +␣

→˓timeout):

MapComponentHeld: Component 0 of map angry-husky-law is held: [13] Error from␣
→˓slot1_6@1bea834c10a5: SHADOW at 172.17.0.2 failed to send file(s) to <172.17.0.
→˓2:33571>: error reading from /home/jovyan/tutorials/this-file-does-not-exist.
→˓txt: (errno 2) No such file or directory; STARTER failed to receive file(s)␣
→˓from <172.17.0.2:9618>

Yikes! HTMap has raised an exception to inform us that a component of our map got held. It also
tells us why HTCondor held the component: error reading from /home/jovyan/tutorials/
this-file-does-not-exist: (errno 2) No such file or directory; STARTER failed to
receive file(s) from <172.17.0.2:9618>.

This time around the hold reason is pretty clear: a local file that HTCondor expected to exist didn’t. We
could fix the problem by creating the file, and then releasing the map, which tells HTCondor to try again:

2.6. Error Handling 21



htmap Documentation, Release 0.6.1

[4]: path.touch() # this creates an empty file

Now the map will run successfully. We tell HTMap to “release” the hold, allowing the map to continue
running.

[5]: will_get_held.release()
print(will_get_held.get(0))

I didn't get held!

Debugging holds

Unfortunately, holds will often not be so easy to resolve. Sometimes they are simply ephemeral errors that
can be resolved by releasing the map without changing anything. But sometimes you’ll need to talk to your
HTCondor pool administrator to figure out what’s going wrong.

Sometimes these errors are caused by additional parameters specified in your ~/.htmaprc file. Are you sure
~/.htmaprc has the intended parameters?

If you’re feeling really adventurous, look at files in the directory ~/.htmap/. The standard output and error
files are contained within this directory. This might help solve your problem.

2.6.2 Execution Errors

HTMap can also detect Python exceptions that occur during component execution. To see this in action, let’s
define a function where a component will have a problem:

[6]: @htmap.mapped
def inverse(x):

return 1 / x

When x = 0, inverse(x) will fail with a ZeroDivisionError. If we run it locally, the error will halt
execution and drop a traceback into our laps:

[7]: inverse(0)

---------------------------------------------------------------------------
ZeroDivisionError Traceback (most recent call last)
<ipython-input-7-7538d73c586c> in <module>
----> 1 inverse(0)

~/htmap/htmap/mapped.py in __call__(self, *args, **kwargs)
50 def __call__(self, *args, **kwargs):
51 """Call the function as normal, locally."""

---> 52 return self.func(*args, **kwargs)
53
54 def map(

(continues on next page)

22 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

<ipython-input-6-769ac4dfb4b6> in inverse(x)
1 @htmap.mapped
2 def inverse(x):

----> 3 return 1 / x

ZeroDivisionError: division by zero

The traceback has a lot of critically-useful information in it. In fact, it tells us exactly the line that raised the
error (remember that tracebacks should be read in reverse - the last block of source code is where the error
began).

HTMap is able to transport this kind of information back from an executing component, but like the regular
output of a map we won’t see it until we try to load up the output for the failed component. We’ll make a
one-component map to demonstrate what happens:

[8]: bad_map = inverse.map([0])
bad_map.get(0)

Created map fair-sly-drone with 1 components

---------------------------------------------------------------------------
MapComponentError Traceback (most recent call last)
<ipython-input-8-d23b8117e4db> in <module>

1 bad_map = inverse.map([0])
----> 2 bad_map.get(0)

~/htmap/htmap/maps.py in _protect(self, *args, **kwargs)
43 if not self.exists:
44 raise exceptions.MapWasRemoved(f'Cannot call {method} for␣

→˓map {self.tag} because it has been removed')
---> 45 return method(self, *args, **kwargs)

46
47 return _protect

~/htmap/htmap/maps.py in get(self, component, timeout)
390 If ``None``, wait forever.
391 """

--> 392 return self._load_output(component, timeout = timeout)
393
394 def __getitem__(self, item: int) -> Any:

~/htmap/htmap/maps.py in _load_output(self, component, timeout)
348 return next(status_and_result)
349 elif status == 'ERR':

--> 350 raise exceptions.MapComponentError(f'Component {component}␣
→˓of map {self.tag} encountered error while executing. Error report:\n{self._

(continues on next page)

2.6. Error Handling 23



htmap Documentation, Release 0.6.1

(continued from previous page)

→˓load_error(component).report()}')
351 else:
352 raise exceptions.InvalidOutputStatus(f'Output status {status}

→˓ is not valid')

MapComponentError: Component 0 of map fair-sly-drone encountered error while␣
→˓executing. Error report:
========== Start error report for component 0 of map fair-sly-drone ==========
Landed on execute node 1bea834c10a5 (172.17.0.2) at 2020-05-21 17:45:40.954824

Python executable is /opt/conda/bin/python3 (version 3.7.6)
with installed packages
alembic==1.4.2
async-generator==1.10
attrs==19.3.0
backcall==0.1.0
bleach==3.1.4
blinker==1.4
brotlipy==0.7.0
certifi==2020.4.5.1
certipy==0.1.3
cffi==1.14.0
chardet==3.0.4
click==7.1.2
click-didyoumean==0.0.3
cloudpickle==1.4.1
colorama==0.4.3
conda==4.8.2
conda-package-handling==1.6.0
cryptography==2.9.2
cursor==1.3.4
decorator==4.4.2
defusedxml==0.6.0
entrypoints==0.3
halo==0.0.29
htchirp==1.0
htcondor==8.9.6
-e git+https://github.com/htcondor/htmap.

→˓git@e0fd6de94fcad0295ae674e5479fac51cf57f34f#egg=htmap
idna==2.9
importlib-metadata==1.6.0
ipykernel==5.2.1
ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_

→˓1588362967322/work
ipython-genutils==0.2.0
jedi==0.17.0

(continues on next page)

24 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

Jinja2==2.11.2
json5==0.9.0
jsonschema==3.2.0
jupyter-client==6.1.3
jupyter-core==4.6.3
jupyter-telemetry==0.0.5
jupyterhub==1.1.0
jupyterlab==2.1.1
jupyterlab-server==1.1.1
log-symbols==0.0.14
Mako==1.1.0
MarkupSafe==1.1.1
mistune==0.8.4
nbconvert==5.6.1
nbformat==5.0.6
nbstripout==0.3.7
notebook==6.0.3
oauthlib==3.0.1
pamela==1.0.0
pandocfilters==1.4.2
parso==0.7.0
pexpect==4.8.0
pickleshare==0.7.5
prometheus-client==0.7.1
prompt-toolkit==3.0.5
ptyprocess==0.6.0
pycosat==0.6.3
pycparser==2.20
pycurl==7.43.0.5
Pygments==2.6.1
PyJWT==1.7.1
pyOpenSSL==19.1.0
pyrsistent==0.16.0
PySocks==1.7.1
python-dateutil==2.8.1
python-editor==1.0.4
python-json-logger==0.1.11
pyzmq==19.0.0
requests==2.23.0
ruamel-yaml==0.15.80
ruamel.yaml.clib==0.2.0
Send2Trash==1.5.0
six==1.14.0
spinners==0.0.24
SQLAlchemy==1.3.16
termcolor==1.1.0

(continues on next page)

2.6. Error Handling 25



htmap Documentation, Release 0.6.1

(continued from previous page)

terminado==0.8.3
testpath==0.4.4
toml==0.10.0
tornado==6.0.4
tqdm==4.46.0
traitlets==4.3.3
urllib3==1.25.9
wcwidth==0.1.9
webencodings==0.5.1
zipp==3.1.0

Scratch directory contents are
/home/jovyan/.condor/local/execute/dir_461/.chirp.config
/home/jovyan/.condor/local/execute/dir_461/_htmap_user_transfer
/home/jovyan/.condor/local/execute/dir_461/.job.ad
/home/jovyan/.condor/local/execute/dir_461/_condor_stderr
/home/jovyan/.condor/local/execute/dir_461/.machine.ad
/home/jovyan/.condor/local/execute/dir_461/func
/home/jovyan/.condor/local/execute/dir_461/_condor_stdout
/home/jovyan/.condor/local/execute/dir_461/0.in
/home/jovyan/.condor/local/execute/dir_461/_htmap_transfer
/home/jovyan/.condor/local/execute/dir_461/_htmap_do_output_transfer
/home/jovyan/.condor/local/execute/dir_461/_htmap_transfer_plugin_cache
/home/jovyan/.condor/local/execute/dir_461/condor_exec.exe
/home/jovyan/.condor/local/execute/dir_461/.update.ad

Exception and traceback (most recent call last):
File "<ipython-input-6-769ac4dfb4b6>", line 3, in inverse
return 1 / x

Local variables:
x = 0

ZeroDivisionError: division by zero

=========== End error report for component 0 of map fair-sly-drone ===========

Neat! This traceback is, unfortunately, harder to read than the other one. We need to ignore
everything above MapComponentError: component 0 of map <tag> encountered error while
executing. Error report: - it’s just about the internal error that HTMap is raising to propagate the
error to us. The real error is the stuff below ========= Start error report for component 0 of
map <tag> =========.

Since we’re trying to debug remotely, HTMap has gathered some metadata about the HTCondor “execute
node” where the component was running. First it tell us where it is and when the component started executing.
Next, the report tells us about the Python environment that was used to execute your function, including a
list of installed packages. We also get a listing of the contents of the working directory - in this example,

26 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

because we didn’t add any extra input files, it’s just a bunch of files that HTCondor and HTMap are using.

The meat of the error is the last thing in the error report. We get roughly the same information that we got in
the local traceback, but we also get a printout of the local variables in each stack frame.

Since the local HTMap error is raised as soon as it finds a bad component, you may find it convenient to look
at all of the error reports for your map (hopefully not too many!). htmap.Map.error_reports provides exactly
this functionality:

[9]: worse_map = inverse.map([0, 0, 0])
worse_map.wait(errors_ok = True) # wait for all of the components to hit the␣
→˓error
for report in worse_map.error_reports():

print(report + '\n')

Created map firm-vast-oven with 3 components
========== Start error report for component 0 of map firm-vast-oven ==========
Landed on execute node 1bea834c10a5 (172.17.0.2) at 2020-05-21 17:45:44.454503

Python executable is /opt/conda/bin/python3 (version 3.7.6)
with installed packages

alembic==1.4.2
async-generator==1.10
attrs==19.3.0
backcall==0.1.0
bleach==3.1.4
blinker==1.4
brotlipy==0.7.0
certifi==2020.4.5.1
certipy==0.1.3
cffi==1.14.0
chardet==3.0.4
click==7.1.2
click-didyoumean==0.0.3
cloudpickle==1.4.1
colorama==0.4.3
conda==4.8.2
conda-package-handling==1.6.0
cryptography==2.9.2
cursor==1.3.4
decorator==4.4.2
defusedxml==0.6.0
entrypoints==0.3
halo==0.0.29
htchirp==1.0
htcondor==8.9.6
-e git+https://github.com/htcondor/htmap.

→˓git@e0fd6de94fcad0295ae674e5479fac51cf57f34f#egg=htmap
idna==2.9

(continues on next page)

2.6. Error Handling 27

https://htmap.readthedocs.io/en/stable/api.html#htmap.Map.error_reports


htmap Documentation, Release 0.6.1

(continued from previous page)

importlib-metadata==1.6.0
ipykernel==5.2.1
ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_

→˓1588362967322/work
ipython-genutils==0.2.0
jedi==0.17.0
Jinja2==2.11.2
json5==0.9.0
jsonschema==3.2.0
jupyter-client==6.1.3
jupyter-core==4.6.3
jupyter-telemetry==0.0.5
jupyterhub==1.1.0
jupyterlab==2.1.1
jupyterlab-server==1.1.1
log-symbols==0.0.14
Mako==1.1.0
MarkupSafe==1.1.1
mistune==0.8.4
nbconvert==5.6.1
nbformat==5.0.6
nbstripout==0.3.7
notebook==6.0.3
oauthlib==3.0.1
pamela==1.0.0
pandocfilters==1.4.2
parso==0.7.0
pexpect==4.8.0
pickleshare==0.7.5
prometheus-client==0.7.1
prompt-toolkit==3.0.5
ptyprocess==0.6.0
pycosat==0.6.3
pycparser==2.20
pycurl==7.43.0.5
Pygments==2.6.1
PyJWT==1.7.1
pyOpenSSL==19.1.0
pyrsistent==0.16.0
PySocks==1.7.1
python-dateutil==2.8.1
python-editor==1.0.4
python-json-logger==0.1.11
pyzmq==19.0.0
requests==2.23.0
ruamel-yaml==0.15.80

(continues on next page)

28 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

ruamel.yaml.clib==0.2.0
Send2Trash==1.5.0
six==1.14.0
spinners==0.0.24
SQLAlchemy==1.3.16
termcolor==1.1.0
terminado==0.8.3
testpath==0.4.4
toml==0.10.0
tornado==6.0.4
tqdm==4.46.0
traitlets==4.3.3
urllib3==1.25.9
wcwidth==0.1.9
webencodings==0.5.1
zipp==3.1.0

Scratch directory contents are
/home/jovyan/.condor/local/execute/dir_492/.chirp.config
/home/jovyan/.condor/local/execute/dir_492/_htmap_user_transfer
/home/jovyan/.condor/local/execute/dir_492/.job.ad
/home/jovyan/.condor/local/execute/dir_492/_condor_stderr
/home/jovyan/.condor/local/execute/dir_492/.machine.ad
/home/jovyan/.condor/local/execute/dir_492/func
/home/jovyan/.condor/local/execute/dir_492/_condor_stdout
/home/jovyan/.condor/local/execute/dir_492/0.in
/home/jovyan/.condor/local/execute/dir_492/_htmap_transfer
/home/jovyan/.condor/local/execute/dir_492/_htmap_do_output_transfer
/home/jovyan/.condor/local/execute/dir_492/_htmap_transfer_plugin_cache
/home/jovyan/.condor/local/execute/dir_492/condor_exec.exe
/home/jovyan/.condor/local/execute/dir_492/.update.ad

Exception and traceback (most recent call last):
File "<ipython-input-6-769ac4dfb4b6>", line 3, in inverse
return 1 / x

Local variables:
x = 0

ZeroDivisionError: division by zero

=========== End error report for component 0 of map firm-vast-oven ===========

========== Start error report for component 1 of map firm-vast-oven ==========
Landed on execute node 1bea834c10a5 (172.17.0.2) at 2020-05-21 17:45:44.216714

(continues on next page)

2.6. Error Handling 29



htmap Documentation, Release 0.6.1

(continued from previous page)

Python executable is /opt/conda/bin/python3 (version 3.7.6)
with installed packages

alembic==1.4.2
async-generator==1.10
attrs==19.3.0
backcall==0.1.0
bleach==3.1.4
blinker==1.4
brotlipy==0.7.0
certifi==2020.4.5.1
certipy==0.1.3
cffi==1.14.0
chardet==3.0.4
click==7.1.2
click-didyoumean==0.0.3
cloudpickle==1.4.1
colorama==0.4.3
conda==4.8.2
conda-package-handling==1.6.0
cryptography==2.9.2
cursor==1.3.4
decorator==4.4.2
defusedxml==0.6.0
entrypoints==0.3
halo==0.0.29
htchirp==1.0
htcondor==8.9.6
-e git+https://github.com/htcondor/htmap.

→˓git@e0fd6de94fcad0295ae674e5479fac51cf57f34f#egg=htmap
idna==2.9
importlib-metadata==1.6.0
ipykernel==5.2.1
ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_

→˓1588362967322/work
ipython-genutils==0.2.0
jedi==0.17.0
Jinja2==2.11.2
json5==0.9.0
jsonschema==3.2.0
jupyter-client==6.1.3
jupyter-core==4.6.3
jupyter-telemetry==0.0.5
jupyterhub==1.1.0
jupyterlab==2.1.1
jupyterlab-server==1.1.1
log-symbols==0.0.14

(continues on next page)

30 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

Mako==1.1.0
MarkupSafe==1.1.1
mistune==0.8.4
nbconvert==5.6.1
nbformat==5.0.6
nbstripout==0.3.7
notebook==6.0.3
oauthlib==3.0.1
pamela==1.0.0
pandocfilters==1.4.2
parso==0.7.0
pexpect==4.8.0
pickleshare==0.7.5
prometheus-client==0.7.1
prompt-toolkit==3.0.5
ptyprocess==0.6.0
pycosat==0.6.3
pycparser==2.20
pycurl==7.43.0.5
Pygments==2.6.1
PyJWT==1.7.1
pyOpenSSL==19.1.0
pyrsistent==0.16.0
PySocks==1.7.1
python-dateutil==2.8.1
python-editor==1.0.4
python-json-logger==0.1.11
pyzmq==19.0.0
requests==2.23.0
ruamel-yaml==0.15.80
ruamel.yaml.clib==0.2.0
Send2Trash==1.5.0
six==1.14.0
spinners==0.0.24
SQLAlchemy==1.3.16
termcolor==1.1.0
terminado==0.8.3
testpath==0.4.4
toml==0.10.0
tornado==6.0.4
tqdm==4.46.0
traitlets==4.3.3
urllib3==1.25.9
wcwidth==0.1.9
webencodings==0.5.1
zipp==3.1.0

(continues on next page)

2.6. Error Handling 31



htmap Documentation, Release 0.6.1

(continued from previous page)

Scratch directory contents are
/home/jovyan/.condor/local/execute/dir_487/.chirp.config
/home/jovyan/.condor/local/execute/dir_487/_htmap_user_transfer
/home/jovyan/.condor/local/execute/dir_487/.job.ad
/home/jovyan/.condor/local/execute/dir_487/_condor_stderr
/home/jovyan/.condor/local/execute/dir_487/.machine.ad
/home/jovyan/.condor/local/execute/dir_487/func
/home/jovyan/.condor/local/execute/dir_487/_condor_stdout
/home/jovyan/.condor/local/execute/dir_487/_htmap_transfer
/home/jovyan/.condor/local/execute/dir_487/1.in
/home/jovyan/.condor/local/execute/dir_487/_htmap_do_output_transfer
/home/jovyan/.condor/local/execute/dir_487/_htmap_transfer_plugin_cache
/home/jovyan/.condor/local/execute/dir_487/condor_exec.exe
/home/jovyan/.condor/local/execute/dir_487/.update.ad

Exception and traceback (most recent call last):
File "<ipython-input-6-769ac4dfb4b6>", line 3, in inverse
return 1 / x

Local variables:
x = 0

ZeroDivisionError: division by zero

=========== End error report for component 1 of map firm-vast-oven ===========

========== Start error report for component 2 of map firm-vast-oven ==========
Landed on execute node 1bea834c10a5 (172.17.0.2) at 2020-05-21 17:45:44.383019

Python executable is /opt/conda/bin/python3 (version 3.7.6)
with installed packages

alembic==1.4.2
async-generator==1.10
attrs==19.3.0
backcall==0.1.0
bleach==3.1.4
blinker==1.4
brotlipy==0.7.0
certifi==2020.4.5.1
certipy==0.1.3
cffi==1.14.0
chardet==3.0.4
click==7.1.2
click-didyoumean==0.0.3
cloudpickle==1.4.1

(continues on next page)

32 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

colorama==0.4.3
conda==4.8.2
conda-package-handling==1.6.0
cryptography==2.9.2
cursor==1.3.4
decorator==4.4.2
defusedxml==0.6.0
entrypoints==0.3
halo==0.0.29
htchirp==1.0
htcondor==8.9.6
-e git+https://github.com/htcondor/htmap.

→˓git@e0fd6de94fcad0295ae674e5479fac51cf57f34f#egg=htmap
idna==2.9
importlib-metadata==1.6.0
ipykernel==5.2.1
ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_

→˓1588362967322/work
ipython-genutils==0.2.0
jedi==0.17.0
Jinja2==2.11.2
json5==0.9.0
jsonschema==3.2.0
jupyter-client==6.1.3
jupyter-core==4.6.3
jupyter-telemetry==0.0.5
jupyterhub==1.1.0
jupyterlab==2.1.1
jupyterlab-server==1.1.1
log-symbols==0.0.14
Mako==1.1.0
MarkupSafe==1.1.1
mistune==0.8.4
nbconvert==5.6.1
nbformat==5.0.6
nbstripout==0.3.7
notebook==6.0.3
oauthlib==3.0.1
pamela==1.0.0
pandocfilters==1.4.2
parso==0.7.0
pexpect==4.8.0
pickleshare==0.7.5
prometheus-client==0.7.1
prompt-toolkit==3.0.5
ptyprocess==0.6.0

(continues on next page)

2.6. Error Handling 33



htmap Documentation, Release 0.6.1

(continued from previous page)

pycosat==0.6.3
pycparser==2.20
pycurl==7.43.0.5
Pygments==2.6.1
PyJWT==1.7.1
pyOpenSSL==19.1.0
pyrsistent==0.16.0
PySocks==1.7.1
python-dateutil==2.8.1
python-editor==1.0.4
python-json-logger==0.1.11
pyzmq==19.0.0
requests==2.23.0
ruamel-yaml==0.15.80
ruamel.yaml.clib==0.2.0
Send2Trash==1.5.0
six==1.14.0
spinners==0.0.24
SQLAlchemy==1.3.16
termcolor==1.1.0
terminado==0.8.3
testpath==0.4.4
toml==0.10.0
tornado==6.0.4
tqdm==4.46.0
traitlets==4.3.3
urllib3==1.25.9
wcwidth==0.1.9
webencodings==0.5.1
zipp==3.1.0

Scratch directory contents are
/home/jovyan/.condor/local/execute/dir_488/.chirp.config
/home/jovyan/.condor/local/execute/dir_488/_htmap_user_transfer
/home/jovyan/.condor/local/execute/dir_488/.job.ad
/home/jovyan/.condor/local/execute/dir_488/_condor_stderr
/home/jovyan/.condor/local/execute/dir_488/.machine.ad
/home/jovyan/.condor/local/execute/dir_488/func
/home/jovyan/.condor/local/execute/dir_488/_condor_stdout
/home/jovyan/.condor/local/execute/dir_488/_htmap_transfer
/home/jovyan/.condor/local/execute/dir_488/2.in
/home/jovyan/.condor/local/execute/dir_488/_htmap_do_output_transfer
/home/jovyan/.condor/local/execute/dir_488/_htmap_transfer_plugin_cache
/home/jovyan/.condor/local/execute/dir_488/condor_exec.exe
/home/jovyan/.condor/local/execute/dir_488/.update.ad

(continues on next page)

34 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

Exception and traceback (most recent call last):
File "<ipython-input-6-769ac4dfb4b6>", line 3, in inverse
return 1 / x

Local variables:
x = 0

ZeroDivisionError: division by zero

=========== End error report for component 2 of map firm-vast-oven ===========

Unlike holds, you generally won’t want to re-run components that experienced errors (they’ll just fail again).
Instead, an error is usually a signal that you’ve got a bug in your own code. Remove your map, debug the
error locally, then create a new map.

2.6.3 Standard Output and Error

When handling trickier errors, you may need to look at the stdout and stderr from your map components.
stdout and stderr are what you would see on the terminal if you executed your code locally - things like
print and exceptions normally display their information there. HTMap provides access to stdout and
stderr for each component through the appropriately-named attributes of your maps:

[10]: import sys

@htmap.mapped
def stdx(_):

print("Hi from stdout!") # stdout is the default
print("Hi from stderr!", file = sys.stderr)

m = stdx.map([None])

Created map quick-calm-stream with 1 components

[11]: m.stdout.get(0) # get will wait for the stdout to become available, m.stdout[0]␣
→˓wouldn't

[11]: Landed on execute node 1bea834c10a5 (172.17.0.2) at 2020-05-21 17:45:47.056114␣
→˓as jovyan

Scratch directory contents before run:
|- .chirp.config
|- .job.ad
|- .machine.ad
|- .update.ad
|- 0.in

(continues on next page)

2.6. Error Handling 35



htmap Documentation, Release 0.6.1

(continued from previous page)

|- _condor_stderr
|- _condor_stdout
|- _htmap_do_output_transfer
|- * _htmap_transfer
|- * _htmap_transfer_plugin_cache
|- * _htmap_user_transfer
| \- * 0
|- condor_exec.exe
\- func

Python executable is /opt/conda/bin/python3 (version 3.7.6)
with installed packages

alembic==1.4.2
async-generator==1.10
attrs==19.3.0
backcall==0.1.0
bleach==3.1.4
blinker==1.4
brotlipy==0.7.0
certifi==2020.4.5.1
certipy==0.1.3
cffi==1.14.0
chardet==3.0.4
click==7.1.2
click-didyoumean==0.0.3
cloudpickle==1.4.1
colorama==0.4.3
conda==4.8.2
conda-package-handling==1.6.0
cryptography==2.9.2
cursor==1.3.4
decorator==4.4.2
defusedxml==0.6.0
entrypoints==0.3
halo==0.0.29
htchirp==1.0
htcondor==8.9.6
-e git+https://github.com/htcondor/htmap.

→˓git@e0fd6de94fcad0295ae674e5479fac51cf57f34f#egg=htmap
idna==2.9
importlib-metadata==1.6.0
ipykernel==5.2.1
ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_

→˓1588362967322/work
ipython-genutils==0.2.0
jedi==0.17.0

(continues on next page)

36 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

Jinja2==2.11.2
json5==0.9.0
jsonschema==3.2.0
jupyter-client==6.1.3
jupyter-core==4.6.3
jupyter-telemetry==0.0.5
jupyterhub==1.1.0
jupyterlab==2.1.1
jupyterlab-server==1.1.1
log-symbols==0.0.14
Mako==1.1.0
MarkupSafe==1.1.1
mistune==0.8.4
nbconvert==5.6.1
nbformat==5.0.6
nbstripout==0.3.7
notebook==6.0.3
oauthlib==3.0.1
pamela==1.0.0
pandocfilters==1.4.2
parso==0.7.0
pexpect==4.8.0
pickleshare==0.7.5
prometheus-client==0.7.1
prompt-toolkit==3.0.5
ptyprocess==0.6.0
pycosat==0.6.3
pycparser==2.20
pycurl==7.43.0.5
Pygments==2.6.1
PyJWT==1.7.1
pyOpenSSL==19.1.0
pyrsistent==0.16.0
PySocks==1.7.1
python-dateutil==2.8.1
python-editor==1.0.4
python-json-logger==0.1.11
pyzmq==19.0.0
requests==2.23.0
ruamel-yaml==0.15.80
ruamel.yaml.clib==0.2.0
Send2Trash==1.5.0
six==1.14.0
spinners==0.0.24
SQLAlchemy==1.3.16
termcolor==1.1.0

(continues on next page)

2.6. Error Handling 37



htmap Documentation, Release 0.6.1

(continued from previous page)

terminado==0.8.3
testpath==0.4.4
toml==0.10.0
tornado==6.0.4
tqdm==4.46.0
traitlets==4.3.3
urllib3==1.25.9
wcwidth==0.1.9
webencodings==0.5.1
zipp==3.1.0

Running component 0
<function stdx at 0x146c42004680>

with args
(None,)

and kwargs
{}

----- MAP COMPONENT OUTPUT START -----

Hi from stdout!

----- MAP COMPONENT OUTPUT END -----

Finished executing component at 2020-05-21 17:45:47.256167

Scratch directory contents after run:
|- .chirp.config
|- .job.ad
|- .machine.ad
|- .update.ad
|- 0.in
|- _condor_stderr
|- _condor_stdout
|- * _htmap_current_checkpoint
|- _htmap_do_output_transfer
|- * _htmap_transfer
| \- 0.out
|- * _htmap_transfer_plugin_cache
|- * _htmap_user_transfer
| \- * 0
|- condor_exec.exe
\- func

Note that much of the same information from the error report is included in the component stdout for
convenience.

38 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

[12]: m.stderr.get(0)

[12]: Hi from stderr!

These attributes are both iterable sequences, which means that you can do something like this:

[13]: @htmap.mapped
def err(x):

print(f"Hi from stderr! {x}", file = sys.stderr)

err_map = err.map(range(5))
err_map.wait(show_progress_bar = True)

for e in err_map.stderr:
print(e)

green-happy-year: 0%| | 0/5 [00:00<?, ?component/s]

Created map green-happy-year with 5 components

green-happy-year: 100%|##########| 5/5 [00:04<00:00, 1.25component/s]

Hi from stderr! 0

Hi from stderr! 1

Hi from stderr! 2

Hi from stderr! 3

Hi from stderr! 4

[ ]:

2.7 Advanced Tutorials

Note: these tutorial can not be run with Binder

Docker Image Cookbook
How to build HTMap-compatible Docker images.

Output Files
How to move arbitrary files back to the submit machine, or to other locations.

Wrapping External Programs
How to send input and output to an external (i.e., non-Python) program from inside a mapped function.

2.7. Advanced Tutorials 39



htmap Documentation, Release 0.6.1

Checkpointing Maps
How to write a function that can continue from partial progress after being evicted.

Using HTMap on the Open Science Grid
How to use HTMap on the Open Science Grid.

2.7.1 Docker Image Cookbook

Docker is, essentially, a way to send a self-contained computer called a container to another person. You
define the software that goes into the container, and then anyone with Docker installed on their own computer
(the “host”) can run your container and access the software inside without that sofware being installed on the
host. This is an enormous advantage in distributed computing, where it can be difficult to ensure that software
that your own software depends on (“dependencies”) are installed on the computers your code actually runs
on.

To use Docker, you write a Dockerfile which tells Docker how to generate an image, which is a blueprint
to construct a container. The Dockerfile is a list of instructions, such as shell commands or instructions for
Docker to copy files from the build environment into the image. You then tell Docker to “build” the image
from the Dockerfile.

For use with HTMap, you then upload this image to Docker Hub, where it can then be downloaded to execute
nodes in an HTCondor pool. When your HTMap component lands on an execute node, HTCondor will
download your image from Docker Hub and run your code inside it using HTMap.

The following sections describe, roughly in order of increasing complexity, different ways to build Docker
images for use with HTMap. Each level of complexity is introduced to solve a more advanced dependency
management problem. We recommend reading them in order until reach one that works for your dependencies
(each section assumes knowledge of the previous sections).

More detailed information on how Dockerfiles work can be found in the Docker documentation itself This
page only covers the bare minimum to get started with HTMap and Docker.

Attention: This recipe only covers using Docker for execute-side dependency management. You still
need to install dependencies submit-side to launch your map in the first place!

Can I use HTMap’s default image?

HTMap’s default Docker image is htcondor/htmap-exec, which is itself based on`continuumio/anaconda3
<https://hub.docker.com/r/continuumio/anaconda3/>`_. It is based on Python 3 and has many useful pack-
ages pre-installed, such as numpy, scipy, and pandas. If your software only depends on packages included
in the Anaconda distribution, you can use HTMap’s default image and won’t need to create your own.

40 Chapter 2. Tutorials

https://opensciencegrid.org/
https://hub.docker.com
https://docs.docker.com/engine/reference/builder/
https://hub.docker.com/r/htcondor/htmap-exec/
https://hub.docker.com/r/continuumio/anaconda3/
https://docs.anaconda.com/anaconda/packages/pkg-docs/


htmap Documentation, Release 0.6.1

I depend on Python packages that aren’t in the Anaconda distribution

Attention: Before proceeding, install Docker on your computer and make an account on Docker Hub.

Let’s pretend that there’s a package called foobar that your Python function depends on, but isn’t part of the
Anaconda distribution. You will need to write your own Dockerfile to include this package in your Docker
image.

Docker images are built in layers. You always start a Dockerfile by stating which existing Docker image you’d
like to use as your base layer. A good choice is the same Anaconda image that HTMap uses as the default,
which comes with both the conda package manager and the standard pip. Create a file named Dockerfile
and write this into it:

# Dockerfile

FROM continuumio/anaconda3:latest
ENV PATH=/opt/conda/bin/:${PATH}

RUN pip install --no-cache-dir htmap

ARG USER=htmap
RUN groupadd ${USER} \
&& useradd -m -g ${USER} ${USER}
USER ${USER}

Each line in the Dockerfile starts with a short, capitalized word which tells Docker what kind of build in-
struction it is.

• FROM means “start with this base image”.

• RUN means “execute these shell commands in the container”.

• ARG means “set build argument” - it acts like an environment variable that’s only set during the image
build.

Lines that begin with a # are comments in a Dockerfile. The above lines say that we want to inherit from the
image continuumio/anaconda3:latest and build on top of it. To be compatible with HTMap, we install
htmap via pip. We also set up a non-root user to do the execution, which is important for security. Naming
that user htmap is arbitrary and has nothing to do with the htmap package itself.

Now we need to tell Docker to run a shell command during the build to install foobar by adding one more
line to the bottom of the Dockerfile.

# Dockerfile

FROM continuumio/anaconda3:latest
ENV PATH=/opt/conda/bin/:${PATH}

(continues on next page)

2.7. Advanced Tutorials 41

https://docs.docker.com/install/#supported-platforms
https://hub.docker.com/


htmap Documentation, Release 0.6.1

(continued from previous page)

RUN pip install --no-cache-dir htmap

ARG USER=htmap
RUN groupadd ${USER} \
&& useradd -m -g ${USER} ${USER}
USER ${USER}

# if foobar can be install via conda, use these lines
RUN conda install -y foobar \
&& conda clean -y --all

# if foobar can be installed via pip, use these lines
RUN pip install --no-cache-dir foobar

Some notes on the above:

• If you need to install some packages via conda and some via pip, you may need to use both types of
lines.

• The conda clean and --no-cache-dir instructions for conda and pip respectively just help keep
the final Docker image as small as possible.

• The -y options for the conda commands are the equivalent of answering “yes” to questions that conda
asks on the command line, since the Docker build is non-interactive.

• A trailing \ is a line continuation, so that first command is equivalent to running conda install -y
foobar && conda clean -y --all, which is just bash shorthand for “do both of these things”.

If you need install many packages, we recommend writing a requirements.txt file (see the Python pack-
aging docs) and using

# Dockerfile

FROM continuumio/anaconda3:latest
ENV PATH=/opt/conda/bin/:${PATH}

RUN pip install --no-cache-dir htmap

ARG USER=htmap
RUN groupadd ${USER} \
&& useradd -m -g ${USER} ${USER}
USER ${USER}

COPY requirements.txt requirements.txt
RUN pip install --no-cache-dir -r requirements.txt

The COPY build instruction tells Docker to copy the file requirements.txt (path relative to the build direc-
tory, explained below) to the path requirements.txt inside the image. Relative paths inside the container
work the same way they do in the shell; the image has a “working directory” that you can set using the

42 Chapter 2. Tutorials

https://pip.pypa.io/en/stable/user_guide/#requirements-files
https://pip.pypa.io/en/stable/user_guide/#requirements-files


htmap Documentation, Release 0.6.1

WORKDIR instruction.

Now that we have a Dockerfile, we can tell Docker to use it to build an image. You’ll need to choose a
descriptive name for the image, ideally something easy to type that’s related to your project (like qubits
or gene-analysis). Wherever you see <image> below, insert that name. You’ll also want to version your
images by adding a “tag” after a :, like <image>:v1, <image>:v2, <image>:v3, etc. You can use any string
you’d like for the tag. You’ll also need to know your Docker Hub username. Wherever you see <username>
below, insert your username, and wherever you see <tag>, insert your chosen version tag.

At the command line, in the directory that contains Dockerfile, run

$ docker build -t <username>/<image>:<tag> .

You should see the output of the build process, hopefully ending with

Successfully tagged <username>/<image>:<tag>

<username>/<image>:<tag> is the universal identifier for your image.

Now we need to push the image up to Docker Hub. Run

$ docker push <username>/<image>:<tag>

You’ll be asked for your credentials, and then all of the data for your image will be pushed up to Docker
Hub. Once this is done, you should be able to use the image with HTMap. Change your HTMap settings
(see DOCKER) to point to your new image, and launch your maps!

I don’t need most of the Anaconda distribution and want to use a lighter-weight base image

Instead of using the full Anaconda distribution, use a base Docker image that only includes the conda package
manager:

# Dockerfile

FROM continuumio/miniconda3:latest
ENV PATH=/opt/conda/bin/:${PATH}

RUN pip install --no-cache-dir htmap

ARG USER=htmap
RUN groupadd ${USER} \
&& useradd -m -g ${USER} ${USER}
USER ${USER}

From here, install your particular dependencies as above.

If you prefer to not use conda, an even-barer-bones image could be produced from

2.7. Advanced Tutorials 43



htmap Documentation, Release 0.6.1

# Dockerfile

FROM python:latest

RUN pip install --no-cache-dir htmap

ARG USER=htmap
RUN groupadd ${USER} \
&& useradd -m -g ${USER} ${USER}
USER ${USER}

We use python:latest as our base image, so we don’t have conda anymore.

I want to use a Python package that’s not on PyPI or Anaconda

Perhaps you’ve written a package yourself, or you want to use a package that is only available as source code
on GitHub or a similar website. There are multiple way to approach this, most of them roughly equivalent.
The first step for all of them is to write a setup.py file for your package. Some instructions for writing a
setup.py can be found here.

Once you have a working setup.py, there are various ways to proceed, in reverse order of complexity:

• Upload your package to PyPI and pip install <package> as in previous sections. This is the least
flexible because you’ll need to upload to PyPI every time your update your package. If you don’t own
the package, you shouldn’t do this!

• Upload your package to a publicly-accessible version control repository and use pip’s VCS support to
install it (for example, if your package is on GitHub, something like pip install git+https://
github.com/<UserName>/<package>.git).

• Use the COPY build instruction to copy your package directly into the Docker image, then pip install
<path/to/dir/containing/setup.py> as a RUN instruction. Note that your package will need to
be in the Docker build context (see the docs for details).

I want to use a base image that doesn’t come with Python pre-installed

Say you have an existing Docker image that you need to use (maybe it includes non-Python dependencies
that you aren’t sure how to install yourself). You need to add Python to this image so that you can run your
own code in it. We recommend adding miniconda to the image by adding these lines to your Dockerfile:

# Dockerfile

# see discussion below
FROM ubuntu:latest
RUN apt-get -y update \
&& apt-get install -y wget

(continues on next page)

44 Chapter 2. Tutorials

https://the-hitchhikers-guide-to-packaging.readthedocs.io/en/latest/creation.html#arranging-your-file-and-directory-structure
https://pip.pypa.io/en/stable/reference/pip_install/#vcs-support
https://docs.docker.com/engine/reference/commandline/build/


htmap Documentation, Release 0.6.1

(continued from previous page)

# Docker build arguments
# use the Python version you need
# default to latest version of miniconda (which can then install any version of␣
→˓Python)
ARG PYTHON_VERSION=3.6
ARG MINICONDA_VERSION=latest

# set install location, and add the Python in that location to the PATH
ENV CONDA_DIR=/opt/conda
ENV PATH=${CONDA_DIR}/bin:${PATH}

# install miniconda and Python version specified in config
# (and ipython, which is nice for debugging inside the container)
RUN cd /tmp \
&& wget --quiet https://repo.continuum.io/miniconda/Miniconda3-${MINICONDA_
→˓VERSION}-Linux-x86_64.sh \
&& bash Miniconda3-${MINICONDA_VERSION}-Linux-x86_64.sh -f -b -p $CONDA_DIR \
&& rm Miniconda3-${MINICONDA_VERSION}-Linux-x86_64.sh \
&& conda install python=${PYTHON_VERSION} \
&& conda clean -y -all

After this, you can install HTMap and any other Python packages you need as in the preceeding sections.

Note that in this example we based the image on Ubuntu’s base image and installed wget, which we used to
download the miniconda installer. Depending on your base image, you may need to use a different package
manager (for example, yum) or different command-line file download tool (for example, curl).

I want to build an image for use on the Open Science Grid

First, read through OSG’s Singularity documentation.

Based on that, our goal will be to build a Docker image and have OSG convert it to a Singularity image that
can be served by OSG. The tricky part of this is that Docker’s ENV instruction won’t carry over to Singularity,
which is the usual method of etting python3 on the PATH inside the container. To remedy this, we will
create a special directory structure that Singularity recognizes and uses to execute instructions with specified
environments.

This is not a Singularity tutorial, so the simplest thing to do is copy the entire singularity.d directory that
htmap-exec uses: https://github.com/htcondor/htmap/tree/master/htmap-exec/singularity.d

Anything you need to specify for your environment should be done in singularity.d/env/
90-environment.sh. This file will be “sourced” (run) when the image starts, before HTMap executes.

In your Dockerfile, you must copy this directory to the correct location inside the image:

# Dockerfile snippet

COPY <path/to/singularity.d> /.singularity.d

2.7. Advanced Tutorials 45

https://support.opensciencegrid.org/support/solutions/articles/12000024676-docker-and-singularity-containers
https://github.com/htcondor/htmap/tree/master/htmap-exec/singularity.d


htmap Documentation, Release 0.6.1

Note the path on the right: a hidden directory at the root of the filesystem. This is just a Singularity conven-
tion. The left path is just the location of the singularity.d directory you made.

Note that if you FROM an htmap-exec image, this setup will already be embedded in the image for you.

2.7.2 Output Files

If the “output” of your map function is a file, HTMap’s basic functionality will not be sufficient for you. As
a toy example, consider a function which takes a string and a number, and writes out a file containing that
string repeated that number of times, with a space between each repetition. The file itself will be the output
of our function.

import htmap

import itertools
from pathlib import Path

@htmap.mapped
def repeat(string, number):

output_path = Path("repeated.txt")

with output_path.open(mode="w") as f:
f.write(" ".join(itertools.repeat(string, number)))

This would work great locally, producing a file named repeated.txt in the directory we ran the code from.
If this same code runs execute-side, the file will still be produced, but HTMap won’t know that we care about
the file. In fact, the map will appear to be spectacularly useless:

with repeat.build_map() as mb:
mb("foo", 5)
mb("wiz", 3)
mb("bam", 2)

repeated = mb.map

print(list(repeated))
# [None, None, None]

There’s no sign of our output file! (A function with no return statement implicitly returns None.)

We need to tell HTMap that we are producing an output file. We can do this by adding a call to an HTMap
hook function in our mapped function after we create the file:

import htmap

import itertools
from pathlib import Path

(continues on next page)

46 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

@htmap.mapped
def repeat(string, number):

output_path = Path("repeated.txt")

with output_path.open(mode="w") as f:
f.write(" ".join(itertools.repeat(string, number)))

htmap.transfer_output_files(output_path) # identical, except for this line

The htmap.transfer_output_files() function tells HTMap to move the files at the given paths back to
the submit machine for us. We can then access those files using the Map.output_files attribute, which
behaves like a sequence indexed by component numbers. The elements of the sequence are pathlib.Path
pointing to the directories containing the output files from each component, like so:

with repeat.build_map() as mb:
mb("foo", 5)
mb("wiz", 3)
mb("bam", 2)

repeated = mb.map

for component, base in enumerate(repeated.output_files):
path = base / "repeated.txt"
print(component, path.read_text())

# 0 foo foo foo foo foo
# 1 wiz wiz wiz
# 2 bam bam

2.7.3 Transferring Output to Other Places

You may need to transfer output to places that are not the submit machine. HTMap can arrange this for
you using the output_remaps feature of MapOptions in combination with TransferPath to specify the
destination of the output files.

In the below example, we have a function move_file that just tells HTMap to transfer whatever input it is
given. We give the path to an input file stored in a S3 bucket named my-bucket on some S3 server we can
access, with some file (created and placed in the bucket ahead of time) named in.txt. Our goal is to get
that file back into the bucket, but renamed out.txt. To do so, we also create an output_file destination,
and tell HTMap to “remap” the output transfer via the output_remaps argument of MapOptions.

def move_file(input_path):
htmap.transfer_output_files(input_path)

(continues on next page)

2.7. Advanced Tutorials 47

https://docs.python.org/3/library/pathlib.html#pathlib.Path


htmap Documentation, Release 0.6.1

(continued from previous page)

bucket = htmap.TransferPath(
"my-bucket", protocol="s3", location="s3-server.example.com"

)
input_file = bucket / "in.txt"
output_file = bucket / "out.txt"

print(
input_file

) # TransferPath(path='my-bucket/in.txt', protocol='s3', location='s3-server.
→˓example.com')
print(

output_file
) # TransferPath(path='my-bucket/out.txt', protocol='s3', location='s3-server.
→˓example.com')

map = htmap.map(
move_file,
[input_file],
map_options=htmap.MapOptions(

request_memory="128MB",
request_disk="1GB",
output_remaps=[{input_file.name: output_file}],

),
)

After letting the map run, the output file will be in the bucket, and no output file will have been sent back to
the submit node (i.e., m.output_files[0] will be an empty directory).

2.7.4 Wrapping External Programs

HTMap can only map Python functions, but you might need to call an external program on the execute node.
For example, you may need to use a particular Bash utility script, or run a piece of pre-compiled analysis
software. In cases like this, the Python standard library’s subprocess module can be used to communicate
with those programs.

For example, suppose you need to call the Dubious Barology Lyricon (dbl) program, a pre-compiled C
program that you have stored in your home directory at ~/dbl. It takes a single integer argument, and
“returns” a single integer by printing it to standard output. So a call to dbl on the command line looks like

$ dbl 4
8

To use HTMap with dbl, you could write a mapped function that looks something like

48 Chapter 2. Tutorials

https://docs.python.org/3/library/subprocess.html


htmap Documentation, Release 0.6.1

import subprocess
import htmap

@htmap.mapped(
map_options=htmap.MapOptions(

fixed_input_files="dbl",
)

)
def dbl(x):

process = subprocess.run(
["dbl", str(x)],
stdout=subprocess.PIPE, # use capture_output = True in Python 3.7+

)

if process.returncode != 0:
raise Exception("call to dbl failed!")

return_value = int(process.stdout)

return return_value

You’ll need to be careful with functions like this - check for failures in the programs you call, because HTMap
will happily return nonsense if the call fails in some strange way. If we do a map, we’ll end up with the
expected result:

result = dbl.map(range(10))

print(list(result)) # [0, 2, 4, 6, 8, 10, 12, 14, 16, 18]

If you want to test this yourself, here’s the Dubious Barology Lyricon (really a simple bash program):

#!/usr/bin/env bash

echo $((2 * $1))

If your external program outputs files, you may find the Output Files recipe helpful.

2.7.5 Checkpointing Maps

When running on opportunistic resources, HTCondor might “evict” your map components from the execute
locations. Evicted components return to the queue and, without your intervention, restart from scratch.
However, HTMap can preserve files across an eviction and make them available in the next run. You can use
this to write a function that can resume from partial progress when it restarts.

The important thing for you to think about is that HTMap will always run your function from the start.
That means that the general structure of a checkpointing function should look like this:

2.7. Advanced Tutorials 49



htmap Documentation, Release 0.6.1

def function(inputs):
try:

...
# attempt to reload from a checkpoint file

except (
FileNotFoundError,
...,

): # catch any errors that indicate that the checkpoint doesn't exist, is␣
→˓corrupt, etc.

# initialize from input data
...

# do work

Your work must be written such that it doesn’t care where it starts. Generally that means you’ll need to
replace for loops with while loops. For example, a simulation that proceeds in 100 steps like this:

import htmap

@htmap.mapped
def function(initial_state):

current_state = initial_state
for step in range(100):

current_state = evolve(current_state)

return current_state

would need to become something like

import htmap

@htmap.mapped
def function(initial_state):

try:
current_step, current_state = load_from_checkpoint(checkpoint_file)

except FileNotFoundError:
current_step, current_state = 0, initial_state

while current_step < 100:
current_state = evolve(current_state)
current_step += 1

if should_write_checkpoint:
write_checkpoint(current_step, current_state)
htmap.checkpoint(checkpoint_file) # important!

(continues on next page)

50 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

return current_state

Note the call to htmap.checkpoint(). This function takes the paths to the checkpoint file(s) that you’ve
written and does the necessary behind-the-scenes handling to make them available if the component needs
to restart. If you don’t call this function, the files will not be available, and your checkpoint won’t work!

Concrete Example

Let’s work with a more concrete example. Here’s the function, along with some code to run it and prove that
it checkpointed:

from pathlib import Path
import time

import htmap

@htmap.mapped
def counter(num_steps):

checkpoint_path = Path("checkpoint")
try:

step = int(checkpoint_path.read_text())
print("loaded checkpoint!")

except FileNotFoundError:
step = 0
print("starting from scratch")

while True:
time.sleep(1)
step += 1
print(f"completed step {step}")

if step >= num_steps:
break

checkpoint_path.write_text(str(step))
htmap.checkpoint(checkpoint_path)

return True

map = counter.map([30])

# wait for the component to start
while map.component_statuses[0] is not htmap.ComponentStatus.RUNNING:

(continues on next page)

2.7. Advanced Tutorials 51



htmap Documentation, Release 0.6.1

(continued from previous page)

print(map.component_statuses[0])
time.sleep(1)

# let it run for 10 seconds
print("component has started, letting it run...")
time.sleep(10)

# vacate it (force it off current execute resource)
map.vacate()
print("vacated map")

# wait until it starts up again and finishes
while map.component_statuses[0] is not htmap.ComponentStatus.COMPLETED:

print(map.component_statuses[0])
time.sleep(1)

# look at the function output and the stdout from execution
print(map[0])
print(map.stdout(0))

The function itself just sleeps for the given amount of time, but it does it in incremental steps so that we can
checkpoint its progress. We write checkpoints to a file named checkpoint in the current working directory
of the script when it executes. We try to load the current step number (stored as text, so we need to convert it
to an integer) from that file when we start, and if that fails we start from the beginning. We write a checkpoint
after each step, which is overkill (see the next section), but easy to implement for this short example.

The rest of the code (after the function definition) is just there to prove that the example works. If we run
this script, we should see something like this:

IDLE
# many IDLE messages
IDLE
component has started, letting it run...
vacated map
RUNNING
IDLE
# more IDLE messages
IDLE
RUNNING
# many RUNNING messages
RUNNING
True # this is map[0]: it's True, not None, so the function finished␣
→˓successfully

# a bunch of debug information from the stdout of the component

(continues on next page)

52 Chapter 2. Tutorials



htmap Documentation, Release 0.6.1

(continued from previous page)

----- MAP COMPONENT OUTPUT START -----

loaded checkpoint! # we did it!
completed step 10
completed step 11
completed step 12
completed step 13
completed step 14
completed step 15
completed step 16
completed step 17
completed step 18
completed step 19
completed step 20
completed step 21
completed step 22
completed step 23
completed step 24
completed step 25
completed step 26
completed step 27
completed step 28
completed step 29
completed step 30

----- MAP COMPONENT OUTPUT END -----

Finished executing component at 2019-01-20 08:34:31.130818

We successfully started from step 10! For a long-running computation, this could represent a significant
amount of work. Long-running components on opportunistic resources might be evicted several times during
their life, and without checkpointing, may never finish.

Checkpointing Strategy

You generally don’t need to write checkpoints very often. We recommend writing a new checkpoint if a
certain amount of time has elapsed, perhaps an hour. For example, using the datetime library:

import datetime

import htmap

def now():
return datetime.datetime.utcnow()

(continues on next page)

2.7. Advanced Tutorials 53



htmap Documentation, Release 0.6.1

(continued from previous page)

@htmap.mapped
def function(inputs):

latest_checkpoint_at = now()

# load from checkpoint or initialize

while not_done:
# do a unit of work

if now() > latest_checkpoint_at + datetime.timedelta(hours=1):
# write checkpoint
latest_checkpoint_at = now()

return result

Caveats

Checkpointing does introduce some complications with HTMap’s metadata tracking system. In particular,
HTMap only tracks the runtime, stdout, and stderr of the last execution of each component. If your compo-
nents are vacated and start again from a checkpoint, you’ll only see the execution time, standard output, and
standard error from the second run. If you need that information, you should track it yourself inside your
checkpoint files.

2.7.6 Using HTMap on the Open Science Grid

Running HTMap with the Open Science Grid (OSG) requires some special configuration. The OSG does not
support Docker, and is also not amenable to HTMap’s own Singularity delivery mechanism. However, the
OSG does still allow you to run your code inside a Singularity container. The .htmaprc file snippet below
sets up HTMap to use this support.

# .htmaprc

DELIVERY_METHOD = "assume"

[MAP_OPTIONS]
requirements = "HAS_SINGULARITY == TRUE"
"+ProjectName" = "\"<your project name>\""
"+SingularityImage" =␣
→˓"\"/cvmfs/singularity.opensciencegrid.org/<repo/tag:version>\""

The extra " on the left are to escape the +, which is not normally legal syntax, and the extra \" on the right
are to ensure that the actual value is a string.

54 Chapter 2. Tutorials

https://opensciencegrid.org/


htmap Documentation, Release 0.6.1

Note the two places inside < >, where you must supply some information You must specify your OSG project
name, and you must specify which OSG-supplied Singularity image to use. For more information on what
images are available, see the OSG Singularity documentation. HTMap’s own default image, htmap-exec,
is always available on the OSG. For example, to use htmap-exec:v0.4.3, you would set

"+SingularityImage" =␣
→˓"\"/cvmfs/singularity.opensciencegrid.org/htcondor/htmap-exec:v0.4.3\""

For advice on building your own image for the OSG, see I want to build an image for use on the Open Science
Grid.

2.7. Advanced Tutorials 55

https://support.opensciencegrid.org/support/solutions/articles/12000024676-docker-and-singularity-containers


htmap Documentation, Release 0.6.1

56 Chapter 2. Tutorials



CHAPTER

THREE

USING HTCONDOR WITH HTMAP

HTMap is a Python wrapper over the underlying HTCondor API. That means the vast majority of the HT-
Condor functionality is available. This page is a brief overview of how HTMap uses HTCondor to run your
maps. It may be helpful for debugging, or for cross-referencing your HTMap and HTCondor knowledge.

3.1 Component and Job States

Each HTMap map component is represented by an HTCondor job. Map components will usually be in one
of four HTCondor job states:

• Idle: the job/component has not started running yet; it is waiting to be assigned resources to execute
on.

• Running: the job/component is running on an execute machine.

• Held: HTCondor has decided that it can’t run the job/component, but that you (the user) might be able
to fix the problem. The job will try to run again if it released.

• Completed: the job/component has finished running, and HTMap has collected its output. These jobs
will likely leave the HTCondor queue soon.

For more detail, see the relevant HTCondor documentation:

• https://htcondor.readthedocs.io/en/latest/users-manual/managing-a-job.html#
checking-on-the-progress-of-jobs

• https://htcondor.readthedocs.io/en/latest/admin-manual/policy-configuration.html#machine-states

3.2 Requesting Resources

The default resources provisioned for your map component can be limiting – what if your job requires more
memory or more disk space? HTCondor jobs can request resources, and HTMap supports those requests via
MapOptions.

MapOptions accepts many of the same keys that condor_submit accepts. Some of the more commonly
requested resources are:

• request_memory. Possible values are like "1MB for 1MB, or "2GB" for 2GB of memory.

57

https://htcondor.readthedocs.io/en/latest/users-manual/managing-a-job.html#checking-on-the-progress-of-jobs
https://htcondor.readthedocs.io/en/latest/users-manual/managing-a-job.html#checking-on-the-progress-of-jobs
https://htcondor.readthedocs.io/en/latest/admin-manual/policy-configuration.html#machine-states
https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html


htmap Documentation, Release 0.6.1

• request_cpus. Possible values are like "1" for 1 CPU, or "2" for 2 CPUs.

• request_disk to request an amount of disk space. Possible values are like "10GB" for 10GB, or
"1TB" for 1 terabyte.

If any of the resource requests are not set, the default values set by your HTCondor cluster administrator will
be used.

These would be set with MapOptions. For example, this code might be used:

options = htmap.MapOptions(
request_cpus="1",
request_disk="10GB",
request_memory="4GB",

)
htmap.map(..., map_options=options)

When it’s mentioned that “the option foo needs to be set” in a submit file, this corresponds to adding the
option in the appropriate place in MapOptions.

3.3 GPUs

• For any GPU job, the option request_gpus needs to be set.

• Many GPU jobs are machine learning jobs. CHTC has a guide on “Run Machine Learning Jobs on
the HTC system”.

There are some site-specific options. For example, CHTC has a guide on some of these options “Jobs that
use GPUs” to run jobs on their GPU Lab. Check with your site’s documentation to see if they have any GPU
documentation.

3.4 Command Line Tools

HTMap tries to expose a complete interface for submitting and managing jobs, but not for examining the
state of your HTCondor pool itself. Here are some HTCondor commands that you may find useful:

• condor_q: seeing the jobs submitted to the scheduler (similar to htmap.status()).

• condor_status: seeing resources the different machines have.

The links go an HTML version of the man pages; they are also visible with man (e.g., man condor_q).
Here’s a list of possibly useful commands:

## See the jobs user foobar has submitted, and their status
condor_q --submitter foobar

## See if how many machines have GPUs, and how many are available
condor_status --constraint "CUDADriverVersion>=10.1" -total

(continues on next page)

58 Chapter 3. Using HTCondor with HTMap

http://chtc.cs.wisc.edu/machine-learning-htc
http://chtc.cs.wisc.edu/machine-learning-htc
http://chtc.cs.wisc.edu/gpu-jobs
http://chtc.cs.wisc.edu/gpu-jobs
http://chtc.cs.wisc.edu/gpu-lab
https://htcondor.readthedocs.io/en/latest/man-pages/condor_q.html
https://htcondor.readthedocs.io/en/latest/man-pages/condor_status.html


htmap Documentation, Release 0.6.1

(continued from previous page)

## See the stats on GPU machines (including GPU name)
condor_status -compact -constraint 'TotalGpus > 0' -af Machine TotalGpus␣
→˓CUDADeviceName CUDACapability

## See how much CUDA memory on each machine (and how many are available)
condor_status --constraint "CUDADriverVersion>=10.1" -attributes␣
→˓CUDAGlobalMemoryMb -json
# See which machines have that much memory
# Also write JSON file so readable by Pandas read_json
condor_status --constraint "CUDADriverVersion>=10.1" -attributes␣
→˓CUDAGlobalMemoryMb -attribute Machine -json >> stats.json

## See how many GPUs are available
condor_status --constraint "CUDADriverVersion>=10.1" -total

CUDAGlobalMemoryMb is not the only attribute that can be displayed; a more complete list is at https://
htcondor.readthedocs.io/en/latest/classad-attributes/machine-classad-attributes.html.

3.4. Command Line Tools 59

https://htcondor.readthedocs.io/en/latest/classad-attributes/machine-classad-attributes.html
https://htcondor.readthedocs.io/en/latest/classad-attributes/machine-classad-attributes.html


htmap Documentation, Release 0.6.1

60 Chapter 3. Using HTCondor with HTMap



CHAPTER

FOUR

TIPS AND TRICKS

4.1 Separate Job Submission/Monitoring/Collection

This is recommended because it’s more interactive and more flexible: it doesn’t rely on the script being free
of bugs on submission. Likewise, un-expected errors can easily be adapted (such as hung jobs, etc). This is
most appropriate for medium- or long-running jobs.

The CLI is useful to monitor and modify ongoing jobs. Generally, in simple use cases we recommend writing
two or three scripts:

• A script for job submission (which is run once).

• Use the CLI or a script for monitoring jobs (which is run many times).

• A script to collect results (which is a few times).

Each script uses these commands:

• Submission: HTMap’s Python API is primarily used here, possibly through map().

• Monitoring: CLI usage is heavy here. htmap status is a good way to view a summary. If any of the
jobs fail, diagnose why with commands like htmap reasons or htmap errors.

• Collection: the completed jobs are collected (as mentioned in How do I only process completed jobs?)
and the results are written to disk/etc.

The CLI is useful for debugging when dealing with component holds and execution errors. It can be used
to quickly view the same kind of information as the Map API (though we recommend loading up the map in
Python once you need to do anything more complex than read text).

4.2 Use the CLI

Use of the CLI is recommended to go alongside separation of submission/monitoring/collection as mentioned
above. This section will provide some useful commands.

This command shows the status of each job for various tags:

htmap status --live # See live display of info on each job (and their tags)

61



htmap Documentation, Release 0.6.1

This might indicate that 4 jobs in tag foo are completed and 2 are idle (or waiting to be run).

This command completely deletes the map with tag foo, including removing any jobs that are in any state
(running, idle, held, whatever). Use this if you want to completely resubmit the map from scratch, without
any previous state.

htmap remove foo

This commands keeps the jobs in the queue, but prevents them from running. This allowed editing them and
lets you edit them live.

htmap hold foo

These commands will show more information about individual maps and map components:

htmap logs # get path to log file; info here is useful for debugging
htmap components foo # view which component status for tag "foo"
htmap errors foo # view all errors for tag "foo"
htmap stdout foo 0 # view stdout for first component of tag "foo"
htmap stderr foo 0 # view stdout for first component of tag "foo"
htmap reasons foo # get reasons for holding map "foo"

Some of the longer output is useful to pipe into less so it’s easily navigable and searchable. For example,

htmap errors foo | less

To get help on less, use the command man less or press h while in less.

Full CLI documentation is at CLI Reference.

4.3 Conditional Execution on Cluster vs. Submit

The environment variable HTMAP_ON_EXECUTE is set to '1'while map components are executing out on the
cluster. This can be useful if you need to switch certain behavior on or off depending whether you’re running
your function locally or not.

4.4 Functional programming

4.4.1 Filter

In the parlance of higher-order functions, HTMap only provides map. Another higher-order function, filter,
is easy to implement once you have a map. To mimic it we create a map with a boolean output, and use
htmap.Map.iter_with_inputs() inside a list comprehension to filter the inputs using the outputs.

Here’s a brief example: checking whether integers are even.

62 Chapter 4. Tips and Tricks



htmap Documentation, Release 0.6.1

import htmap

@htmap.mapped
def is_even(x: int) -> bool:

return x % 2 == 0

result = is_even.map(range(10))

filtered = [input for input, output in result.iter_with_inputs() if output]

print(filtered) # [((0,), {}), ((2,), {}), ((4,), {}), ((6,), {}), ((8,), {})]

4.4.2 Groupby

In the parlance of higher-order functions, HTMap only provides map. Another higher-order function,
groupby, is easy to implement once you have a map. To mimic it we’ll write a helper function that uses
a collections.defaultdict to construct a dictionary that collects inputs that have the same output, us-
ing the output as the key.

Here’s a brief example: grouping integer by whether they are even or not.

import collections
import htmap

@htmap.mapped
def is_even(x: int) -> bool:

return x % 2 == 0

def groupby(result):
groups = collections.defaultdict(list)

for input, output in result.iter_with_inputs():
groups[output].append(input)

return groups

result = is_even.map(range(10))

for group, elements in groupby(result).items():
print(group, elements)

(continues on next page)

4.4. Functional programming 63

https://docs.python.org/3/library/collections.html#collections.defaultdict


htmap Documentation, Release 0.6.1

(continued from previous page)

# True [((0,), {}), ((2,), {}), ((4,), {}), ((6,), {}), ((8,), {})]
# False [((1,), {}), ((3,), {}), ((5,), {}), ((7,), {}), ((9,), {})]

64 Chapter 4. Tips and Tricks



CHAPTER

FIVE

FAQ

5.1 How do I abort a job?

For example, say you mistakenly launched a map tagged foo, but now want to abort/cancel it, fix some input
parameters, then relaunch it.

The right CLI command is htmap remove foo, or the HTMap function remove(). This mirrors the HT-
Condor API and will remove the job from the job scheduler regardless of state (running, idle, held, etc).

5.2 How do I only process completed jobs?

Let’s say you submitted 10,000 long-running jobs, and 99.9% of these jobs have finished successfully. You’d
like to get the results from the successful jobs, and save the results to disk without have to wait for the 10
remaining jobs slow jobs.

The right function to use is components_by_status(). It can filter out the successful jobs and process
those. See the components_by_status() documentation for an example usage.

5.3 Is it possible to use Dask with HTCondor? How does it compare
with HTMap?

HTMap provides a transparent interface to the underlying HTCondor behavior, allowing for features like
using HTCondor file transfer and taking advantage of the rich HTCondor job model. HTMap does need to
be running through the entire duration of your computation.

Dask can spawn its distributed workers on an HTCondor pool. By doing this you get access to Dask’s features,
but not HTCondor’s. Dask will need to be running through the entire duration of your computation.

You should choose the appropriate option for your use case.

Dask Distributed is a lightweight library for distributed Python computation. Dask Distributed has familiar
APIs, is declarative and supports more complex scheduling than map/filter/reduce.

Dask-Jobqueue present a wrapper for HTCondor clusters through their HTCondorCluster. After HTCondor-
Cluster is used, Dask can be used as normal or on your own machine. This is common with other cluster

65

https://distributed.dask.org/
https://jobqueue.dask.org/en/latest/
https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.HTCondorCluster.html#dask_jobqueue.HTCondorCluster
https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.HTCondorCluster.html#dask_jobqueue.HTCondorCluster
https://jobqueue.dask.org/en/latest/generated/dask_jobqueue.HTCondorCluster.html#dask_jobqueue.HTCondorCluster


htmap Documentation, Release 0.6.1

managers too: Dask-Jobqueue also wraps SLURM, SGE, PBS and LSF clusters, and Dask Distributed can
wrap Kubernetes and Hadoop clusters.

5.4 I’m getting a weird error from cloudpickle.load?

You probably have a version mismatch between the submit and execute locations. See the “Attention” box
near the top of Dependency Management.

If you are using custom libraries, always import them before trying to load any output from maps that use
them.

5.5 I’m getting an error about a job being held. What should I do?

Your code likely encountered an error during remote execution. Briefly, try viewing the standard error
(stderr) with HTMap, either via the CLI or API. Details can be found in Tutorials and Error Handling.

66 Chapter 5. FAQ



CHAPTER

SIX

API REFERENCE

6.1 Tags and Map Persistence

The tag is the central organizing piece of data in HTMap. Every map that you run produces a Map which is
connected to a unique tag. A tag cannot be re-used until the associated map has been deleted or retagged.
You can either provide a tag or let HTMap generate one automatically.

If you do not provide a tag, the map will be marked as transient. Transient maps will be removed by the
htmap.clean() function without passing all = True, while non-transient (i.e., persistent) maps will not.
If you provide a tag during map creation or htmap.Map.retag() a map, it will be marked as persistent.

6.2 Mapping Functions

htmap.map(func, args, map_options=None, tag=None, quiet=False)
Map a function call over a one-dimensional iterable of arguments. The function must take exactly one
positional argument and no keyword arguments.

Parameters

• func (Callable) – The function to map the arguments over.

• args (Iterable[Any]) – An iterable of arguments to pass to the mapped function.

• map_options (Optional[MapOptions]) – An instance of htmap.MapOptions.

• tag (Optional[str]) – The tag to assign to this map.

• quiet (bool) – Do not print the map name in an interactive shell.

Return type
Map

Returns
map – A htmap.Map representing the map.

htmap.starmap(func, args=None, kwargs=None, map_options=None, tag=None, quiet=False)
Map a function call over aligned iterables of arguments and keyword arguments. Each element of
args and kwargs is unpacked into the signature of the function, so their elements should be tuples
and dictionaries corresponding to position and keyword arguments of the mapped function.

67

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool


htmap Documentation, Release 0.6.1

Parameters

• func (Callable) – The function to map the arguments over.

• args (Optional[Iterable[Tuple[Any, ...]]]) – An iterable of tuples of posi-
tional arguments to unpack into the mapped function.

• kwargs (Optional[Iterable[Dict[str, Any]]]) – An iterable of dictionaries of
keyword arguments to unpack into the mapped function.

• map_options (Optional[MapOptions]) – An instance of htmap.MapOptions.

• tag (Optional[str]) – The tag to assign to this map.

• quiet (bool) – Do not print the map name in an interactive shell.

Return type
Map

Returns
map – A htmap.Map representing the map.

htmap.build_map(func, map_options=None, tag=None)
Return a MapBuilder for the given function.

Parameters

• func (Callable) – The function to map over.

• map_options (Optional[MapOptions]) – An instance of htmap.MapOptions.

• tag (Optional[str]) – The tag to assign to this map.

Return type
MapBuilder

Returns
map_builder – A MapBuilder for the given function.

6.3 Map Builder

class htmap.MapBuilder(func, map_options=None, tag=None)
The htmap.MapBuilder provides an alternate way to create maps. Once created via htmap.
build_map() or similar as a context manager, the map builder can be called as if it were the function
you’re mapping over. When the with block exits, the inputs are collected and submitted as a single
map.

with htmap.build_map(tag="pow", func=lambda x, p: x ** p) as builder:
for x in range(1, 4):

builder(x, x)

map = builder.map
print(list(map)) # [1, 4, 27]

68 Chapter 6. API Reference

https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str


htmap Documentation, Release 0.6.1

__call__(*args, **kwargs)
Adds the given inputs to the map.

Return type
None

__len__()

The length of a MapBuilder is the number of inputs it has been sent.

Return type
int

property map: Map

The Map associated with this MapBuilder. Will raise htmap.exceptions.NoMapYet when
accessed until the with block for this MapBuilder completes.

6.4 MappedFunction

A more convenient and flexible way to work with HTMap is to use the htmap() decorator to build a
MappedFunction.

htmap.mapped(map_options=None)
A decorator that wraps a function in an MappedFunction, which provides an interface for mapping
functions calls out to an HTCondor cluster.

Parameters
map_options (Optional[MapOptions]) – An instance of htmap.MapOptions. Any
map calls from the MappedFunction produced by this decorator will inherit from this.

Return type
Union[Callable, MappedFunction]

Returns
mapped_function – A MappedFunction that wraps the function (or a wrapper function
that does the wrapping).

class htmap.MappedFunction(func, map_options=None)

Parameters

• func (Callable) – A function to wrap in a MappedFunction.

• map_options (Optional[MapOptions]) – An instance of htmap.MapOptions.
Any map calls from the MappedFunction produced by this decorator will inherit
from this.

map(args, tag=None, map_options=None)
As htmap.map(), but the func argument is the mapped function.

Return type
Map

6.4. MappedFunction 69

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/typing.html#typing.Optional


htmap Documentation, Release 0.6.1

starmap(args=None, kwargs=None, tag=None, map_options=None)
As htmap.starmap(), but the func argument is the mapped function.

Return type
Map

build_map(tag=None, map_options=None)
As htmap.build_map(), but the func argument is the mapped function.

Return type
MapBuilder

6.5 Map

The Map is your window into the status and output of your map. Once you get a map result back from a map
call, you can use its methods to get the status of jobs, change the properties of the map while its running,
pause, restart, or cancel the map, and finally retrieve the output once the map is done.

The various methods that allow you to get and iterate over components will raise exceptions if something has
gone wrong with your map:

• htmap.exceptions.MapComponentError if a component experienced an error while executing.

• htmap.exceptions.MapComponentHeld if a component was held by HTCondor, likely because an
input file did not exist or the component used too much memory or disk.

The exception message will contain information about what caused the error. See Error Handling for more
details on error handling.

class htmap.Map(*, tag, map_dir)
Represents the results from a map call.

Warning: You should never instantiate a Map directly! Instead, you’ll get your Map by calling a
top-level mapping function like htmap.map(), a MappedFunction mapping method, or by using
htmap.load(). We are not responsible for whatever vile contraption you build if you bypass the
correct methods!

__len__()

The length of a Map is the number of components it contains.

__getitem__(item)

Return the output associated with the input index. Does not block.

Return type
Any

classmethod load(tag)
Load a Map by looking up its tag.

Raises htmap.exceptions.TagNotFound if the tag does not exist.

70 Chapter 6. API Reference

https://docs.python.org/3/library/typing.html#typing.Any


htmap Documentation, Release 0.6.1

Parameters
tag (str) – The tag to search for.

Return type
Map

Returns
map – The map with the given tag.

property components: Tuple[int, ...]

Return a tuple containing the component indices for the htmap.Map.

property is_done: bool

True if all of the output is available for this map.

property is_active: bool

True if any map components are not complete (or errored!).

wait(timeout=None, show_progress_bar=False, holds_ok=False, errors_ok=False)
Wait until all output associated with this Map is available.

If any components in the map are held or experience an execution error, this method
will raise an exception (htmap.exceptions.MapComponentHeld or htmap.exceptions.
MapComponentError, respectively).

Parameters

• timeout (Union[int, float, timedelta, None]) – How long to wait for
the map to complete before raising a htmap.exceptions.TimeoutError. If
None, wait forever.

• show_progress_bar (bool) – If True, a progress bar will be displayed.

• holds_ok (bool) – If True, will not raise exceptions if components are held.

• errors_ok (bool) – If True, will not raise exceptions if components experience
execution errors.

Return type
None

get(component, timeout=None)
Return the output associated with the input component index. If the component experienced an
execution error, this will raise htmap.exceptions.MapComponentError. Use get_err(),
errors(), error_reports() to see what went wrong!

Parameters

• component (int) – The index of the input to get the output for.

• timeout (Union[int, float, timedelta, None]) – How long to wait for the
output to exist before raising a htmap.exceptions.TimeoutError. If None,
wait forever.

Return type
Any

6.5. Map 71

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any


htmap Documentation, Release 0.6.1

get_err(component, timeout=None)
Return the error associated with the input component index. If the component actually succeeded,
this will raise htmap.exceptions.ExpectedError.

Parameters

• component (int) – The index of the input to get the output for.

• timeout (Union[int, float, timedelta, None]) – How long to wait for the
output to exist before raising a htmap.exceptions.TimeoutError. If None,
wait forever.

Return type
ComponentError

iter(timeout=None)
Returns an iterator over the output of the htmap.Map in the same order as the inputs, waiting on
each individual output to become available.

Parameters
timeout (Union[int, float, timedelta, None]) – How long to wait for each
output to be available before raising a htmap.exceptions.TimeoutError. If
None, wait forever.

Return type
Iterator[Any]

iter_with_inputs(timeout=None)
Returns an iterator over the inputs and output of the htmap.Map in the same order as the inputs,
waiting on each individual output to become available.

Parameters
timeout (Union[int, float, timedelta, None]) – How long to wait for each
output to be available before raising a htmap.exceptions.TimeoutError. If
None, wait forever.

Return type
Iterator[Tuple[Tuple[tuple, Dict[str, Any]], Any]]

iter_as_available(timeout=None)
Returns an iterator over the output of the htmap.Map, yielding individual outputs as they become
available.

The iteration order is initially random, but is consistent within a single interpreter session once
the map is completed.

Parameters
timeout (Union[int, float, timedelta, None]) – How long to wait for the en-
tire iteration to complete before raising a htmap.exceptions.TimeoutError. If
None, wait forever.

Return type
Iterator[Any]

72 Chapter 6. API Reference

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Any


htmap Documentation, Release 0.6.1

iter_as_available_with_inputs(timeout=None)
Returns an iterator over the inputs and output of the htmap.Map, yielding individual (input,
output) pairs as they become available.

The iteration order is initially random, but is consistent within a single interpreter session once
the map is completed.

Parameters
timeout (Union[int, float, timedelta, None]) – How long to wait for the en-
tire iteration to complete before raising a htmap.exceptions.TimeoutError. If
None, wait forever.

Return type
Iterator[Tuple[Tuple[tuple, Dict[str, Any]], Any]]

iter_inputs()

Returns an iterator over the inputs of the htmap.Map.

Return type
Iterator[Any]

property component_statuses: List[ComponentStatus]

Return the current state.ComponentStatus of each component in the map.

components_by_status()

Return the component indices grouped by their states.

Return type
Mapping[ComponentStatus, Tuple[int, ...]]

Examples

This example finds the completed jobs for a submitted map, and processes those results:

from time import sleep
import htmap

def job(x):
sleep(x)
return 1 / x

m = htmap.map(job, [0, 2, 4, 6, 8], tag="foo")

# Wait for all jobs to finish.
# Alternatively, use `futures = htmap.load("foo")` on a different␣
→˓process
sleep(10)

completed = m.components_by_status()[htmap.JobStatus.COMPLETED]
(continues on next page)

6.5. Map 73

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#Ellipsis


htmap Documentation, Release 0.6.1

(continued from previous page)

for component in completed:
result = m.get(future)
# Whatever processing needs to be done
print(result) # prints "2", "4", "6", and "8"

status()

Return a string containing the number of jobs in each status.

Return type
str

property holds: Dict[int, ComponentHold]

A dictionary of component indices to their Hold (if they are held).

hold_report()

Return a string containing a formatted table describing any held components.

Return type
str

property errors: Dict[int, ComponentError]

A dictionary of component indices to their ExecutionError (if that component experienced an
error).

error_reports()

Yields the error reports for any components that experienced an error during execution.

Return type
Iterator[str]

property memory_usage: List[int]

Return the latest peak memory usage of each map component, measured in MB. A component
that hasn’t reported yet will show a 0.

Warning: Due to current limitations in HTCondor, memory use for very short-lived com-
ponents (<5 seconds) will not be accurate.

property runtime: List[timedelta]

Return the total runtime (user + system) of each component.

property local_data: int

Return the number of bytes stored on the local disk by the map.

remove(force=False)
This command removes a map from the Condor queue. Functionally, this command aborts a job.

This function will completely remove a map from the Condor queue regardless of job state (run-
ning, executing, waiting, etc). All data associated with a removed map is permanently deleted.

74 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/functions.html#int


htmap Documentation, Release 0.6.1

Parameters
force (bool) – If True, do not wait for HTCondor to remove the map components
before removing local data.

Return type
None

property exists: bool

True if and only if the map has not been successfully removed. Otherwise, False.

hold()

This command holds a map. The components of the map will not be allowed to run until released
(see Map.release()).

HTCondor may itself hold your map components if it detects that something has gone wrong
with them. Resolve the underlying problem, then use the Map.release() command to allow
the components to run again.

Return type
None

release()

This command releases a map, undoing holds (see Map.hold()). The held components of a
released map will become idle again.

HTCondor may itself hold your map components if it detects that something has gone wrong
with them. Resolve the underlying problem, then use this command to allow the components to
run again.

Return type
None

pause()

This command pauses a map. The running components of a paused map will keep their resource
claims, but will stop actively executing. The map can be un-paused by resuming it (see the Map.
resume() command).

Return type
None

resume()

This command resumes a map (reverses the Map.pause() command). The running components
of a resumed map will resume execution on their claimed resources.

Return type
None

vacate()

This command vacates a map. The running components of a vacated map will give up their
claimed resources and become idle again.

Checkpointing maps will still have access to their last checkpoint, and will resume from it as if
execution was interrupted for any other reason.

6.5. Map 75

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


htmap Documentation, Release 0.6.1

Return type
None

set_memory(memory)
Change the amount of memory (RAM) each map component needs.

Warning: Edits do not affect components that are currently running. To “restart” compo-
nents so that they see the new attribute value, consider vacating their map (see the vacate
command).

Parameters
memory (int) – The amount of memory (RAM) to request, as an integer number
of MB.

Return type
None

set_disk(disk)
Change the amount of disk space each map component needs.

Warning: Edits do not affect components that are currently running. To “restart” compo-
nents so that they see the new attribute value, consider vacating their map (see the vacate
command).

Parameters
disk (int) – The amount of disk space to request, as an integer number of KB.

Return type
None

rerun(components=None)
Re-run (part of) the map from scratch. The selected components must be completed or errored.

Any existing output of re-run components is removed; they are re-submitted to the HTCondor
queue with their original map options (i.e., without any subsequent edits).

Parameters
components (Optional[Iterable[int]]) – The components to rerun. If None,
the entire map will be re-run.

Return type
None

retag(tag)
Give this map a new tag. The old tag will be available for re-use immediately.

Retagging a map makes it not transient. Maps that have never had an explicit tag given to them
are transient and can be easily cleaned up via the clean command.

76 Chapter 6. API Reference

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None


htmap Documentation, Release 0.6.1

Parameters
tag (str) – The tag to assign to the map.

Return type
None

property is_transient: bool

True is the map is transient, False otherwise.

property stdout: MapStdOut

A sequence containing the stdout for each map component. You can index into it (with a com-
ponent index) to get the stdout for that component, or iterate over the sequence to get all of the
stdout from the map.

property stderr: MapStdErr

A sequence containing the stderr for each map component. You can index into it (with a com-
ponent index) to get the stderr for that component, or iterate over the sequence to get all of the
stderr from the map.

property output_files: MapOutputFiles

A sequence containing the path to the directory containing the output files for each map compo-
nent. You can index into it (with a component index) to get the path for that component, or iterate
over the sequence to get all of the paths from the map.

count(value)→ integer -- return number of occurrences of value

index(value[, start[, stop]])→ integer -- return first index of value.
Raises ValueError if the value is not present.

Supporting start and stop arguments is optional, but recommended.

class htmap.ComponentStatus(value, names=None, *, module=None, qualname=None, type=None,
start=1, boundary=None)

An enumeration of the possible statuses that a map component can be in. These are mostly identical
to the HTCondor job statuses of the same name.

UNKNOWN = 'UNKNOWN'

UNMATERIALIZED = 'UNMATERIALIZED'

IDLE = 'IDLE'

RUNNING = 'RUNNING'

REMOVED = 'REMOVED'

COMPLETED = 'COMPLETED'

HELD = 'HELD'

SUSPENDED = 'SUSPENDED'

6.5. Map 77

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#bool


htmap Documentation, Release 0.6.1

ERRORED = 'ERRORED'

classmethod display_statuses()

Return type
Tuple[ComponentStatus, ...]

class htmap.MapStdOut(map)
An object that helps implement a map’s sequence over its stdout. Don’t both instantiating one your-
self: use the Map.stdout attribute instead.

get(component, timeout=None)
Return a string containing the stdout/stderr from a single map component.

Parameters

• component (int) – The index of the map component to look up.

• timeout (Union[int, float, timedelta, None]) – How long to wait before
raising a htmap.exceptions.TimeoutError. If None, wait forever.

Return type
str

Returns
stdx – The standard output/error of the map component.

class htmap.MapStdErr(map)
An object that helps implement a map’s sequence over its stderr. Don’t both instantiating one your-
self: use the Map.stderr attribute instead.

get(component, timeout=None)
Return a string containing the stdout/stderr from a single map component.

Parameters

• component (int) – The index of the map component to look up.

• timeout (Union[int, float, timedelta, None]) – How long to wait before
raising a htmap.exceptions.TimeoutError. If None, wait forever.

Return type
str

Returns
stdx – The standard output/error of the map component.

class htmap.MapOutputFiles(map)
An object that helps implement a map’s sequence over its output file directories. Don’t both instanti-
ating one yourself: use the Map.output_files attribute instead.

get(component, timeout=None)
Return the pathlib.Path to the directory containing the output files for the given component.

Parameters

78 Chapter 6. API Reference

https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path


htmap Documentation, Release 0.6.1

• component (int) – The index of the map component to look up.

• timeout (Union[int, float, timedelta, None]) – How long to wait before
raising a htmap.exceptions.TimeoutError. If None, wait forever.

Return type
Path

Returns
path – The path to the directory containing the output files for the given component.

6.6 Error Handling

Map components can generally encounter two kinds of errors:

• An exception occurred inside your function on the execute node.

• HTCondor was unable to run the map component for some reason.

The first kind will result in HTMap transporting a htmap.ComponentError back to you, which you can
access via htmap.Map.get_err(). The htmap.ComponentError.report() method returns a formatted
error report for your perusal. htmap.Map.error_reports() is a shortcut that returns all of the error reports
for all of the components of your map. If you want to access the error programmatically, you can grab it using
htmap.get_err().

The second kind of error doesn’t provide as much information. The method htmap.Map.holds() will give
you a dictionary mapping components to their htmap.ComponentHold , if they have one. htmap.Map.
hold_report() will return a formatted table showing any holds in your map. The hold’s reason attribute
will tell you a lot about what HTCondor doesn’t like about your component.

class htmap.ComponentError(*, map, component, exception_msg, node_info, python_info,
scratch_dir_contents, stack_summary)

Represents an error experienced by a map component during remote execution.

map

The htmap.Map the component is a part of.

Type
htmap.Map

component

The component index from the map.

Type
int

exception_msg

The raw message string from the remote exception.

Type
str

6.6. Error Handling 79

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#float
https://docs.python.org/3/library/datetime.html#datetime.timedelta
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str


htmap Documentation, Release 0.6.1

node_info

A tuple containing information about the HTCondor execute node the component ran on.

Type
tuple

python_info

A tuple containing information about the Python installation on the execute node.

Type
tuple

scratch_dir_contents

A list of paths in the scratch directory on the execute node.

Type
List[pathlib.Path]

stack_summary

The Python stack frames at the time of execution, excluding HTMap’s own stack frame.

Type
traceback.StackSummary

report()

Return a formatted error report.

The raw information in this report is available in the attributes of this class.

Return type
str

class htmap.ComponentHold(code, reason)
Represents an HTCondor hold on a map component.

Parameters

• code (int) – The HTCondor HoldReasonCode.

• reason (str) – The HTCondor hold reason.

6.7 MapOptions

Map options are the equivalent of HTCondor’s submit descriptors. All HTCondor submit descriptors are
valid map options except those reserved by HTMap for internal use (see below).

Fixed options are the most basic option. The entire map will used the fixed option. If you pass a single string
as the value of a map option, it will become a fixed option.

Variadic options are options that are given individually to each component of a map. For example, each
component of a map might need a different amount of memory. In that case you could pass a list to
request_memory, with the same number of elements as the number of inputs to the map.

80 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/traceback.html#traceback.StackSummary
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
http://research.cs.wisc.edu/htcondor/manual/current/condor_submit.html


htmap Documentation, Release 0.6.1

Inherited options are given to a htmap.MappedFunction when it is created. Any maps made using that
function can inherit these options. Options that are passed in the actual map call override inherited options
(excepting fixed_input_files, see the note). For example, if you know that a certain function always takes
a large amount of memory, you could give it a large request_memory at the htmap.MappedFunction level
so that you don’t have to do it for every individual map. Additionally, default map options can be set globally
via settings['MAP_OPTIONS.<option_name>'] = <option_value>.

Warning: Only certain options make sense as inherited options. For example, they shouldn’t be variadic
options.

fixed_input_files has special behavior as an inherited option: they are merged together instead of
overridden.

Note: When looking at examples of raw HTCondor submit files, you may see submit descriptors that are
prefixed with a + or a MY.. Those options should be passed to htmap.MapOptions via the custom_options
keyword arguments.

class htmap.MapOptions(*, fixed_input_files=None, input_files=None, output_remaps=None,
custom_options=None, **kwargs)

Parameters

• fixed_input_files (Union[PathLike, TransferPath ,
Iterable[Union[PathLike, TransferPath ]], None]) – A single file, or
an iterable of files, to send to all components of the map.

• input_files (Union[Iterable[Union[PathLike, TransferPath ]],
Iterable[Iterable[Union[PathLike, TransferPath ]]], None]) – An
iterable of single files or iterables of files to map over. This may be useful if you
want additional files to be sent to each map component, but don’t want them in
your mapped function’s arguments.

• output_remaps (Union[Mapping[str, TransferPath ],
Iterable[Mapping[str, TransferPath ]], None]) – A dictionary, or an
iterable of dictionaries, specifying output transfer remaps. A remapped output file
is sent to a specified destination instead of back to the submit machine. If a single
dictionary is passed, it will be applied to every map component (in this case,
you may want to use the $(component) submit macro to differentiate them).
Each dictionary should be a “mapping” between the names (last path component,
as a string) of o utput files and their destinations, given as a TransferPath .
You must still call transfer_output_files() on the files for the them to be
transferred at all; listing them here only sets up the remapping.

• custom_options (Optional[Dict[str, str]]) – A dictionary of submit de-
scriptors that are not built-in HTCondor descriptors. These are the descriptors
that, if you were writing a submit file, would have a leading + or MY.. The leading
characters are unnecessary here, but can be included if you’d like.

6.7. MapOptions 81

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/typing.html#typing.Mapping
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str


htmap Documentation, Release 0.6.1

• kwargs (Union[str, Iterable[str]]) – Additional keyword arguments are in-
terpreted as HTCondor submit descriptors. Values that are single strings are used
for all components of the map. Providing an iterable for the value will map that op-
tion. Certain keywords are reserved for internal use (see the RESERVED_KEYS
class attribute).

Notes

Warning: The representation of the values in fixed_input_files, input_files,
custom_options and kwargs should exactly match the characters in the submit file after the
=.

For example, let’s say your job requires this submit file:

# file: job.submit
foo = "bar"
aaa = xyz
bbb = false
ccc = 1

The MapOptions that express the same submit options would be:

>>> options = {"foo": '"bar"', "aaa": "xyz", "bbb": "false", "ccc": "1"}
>>> print(options["foo"]) # exactly matches the value in the submit file
... "bar"
>>> options["foo"] = "\"bar\"" # alternative value
>>> MapOptions(**options)

Submit file values with quotes require escaped quotes in the Python string.

RESERVED_KEYS = {'+IsHTMapJob', '+component', 'IsHTMapJob', 'MY.IsHTMapJob',
'MY.component', 'arguments', 'component', 'executable', 'jobbatchname',
'log', 'should_transfer_files', 'stderr', 'stdout', 'submit_event_notes',
'transfer_executable', 'transfer_input_files', 'transfer_output_files',
'transfer_output_remaps', 'universe', 'when_to_transfer_output'}

classmethod merge(*others)
Merge any number of MapOptions together, like a collections.ChainMap. Options closer to
the left take priority. :rtype: MapOptions

Note: fixed_input_files is a special case, and is merged up the chain instead of being over-
written. requirements are also combined, in a way where all requirements must be satisfied.

82 Chapter 6. API Reference

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/collections.html#collections.ChainMap


htmap Documentation, Release 0.6.1

6.8 File Transfer

class htmap.TransferPath(path, protocol=None, location=None)
A TransferPath describes the location of a file or directory. If the protocol and location are
both None, it describes a location on the local filesystem. If either are given, it describes a remote
location.

When used as an argument to a mapped function, a TransferPath tells HTMap to arrange for the
specified files/directories to be transferred to the execute machine from some location, which may be
the local filesystem on the submit machine or some remote location like an HTTP address or an S3
server.

Transfer paths are recognized in mapped function inputs as long as they are either:

1. Arguments or keyword arguments of the mapped function.

2. Stored inside a primitive container (tuple, list, set, dictionary value) that is an argument or key-
word argument of the mapped function. Nested containers are inspected recursively.

When the mapped function runs execute-side, it will receive (instead of this object) a normal pathlib.
Path object pointing to the execute-side path of the file/directory.

TransferPath is also used to specify the locations for output files to be sent, if they are not to be
returned to the submit machine. For example, output files could be sent to an S3 server. See the
output_remaps argument of MapOptions for more details on “remapped” output file transfer.

Where appropriate, TransferPath has the same interface as a pathlib.Path. See the examples for
some ways to leverage this API to efficiently construct transfer paths.

Attention: You may need to pass additional submit descriptors to your map to actually be able to
use input/output transfers for certain protocols. For example, to transfer to and from an S3 server,
you also need to pass aws_access_key_id_file and aws_secret_access_key_file. See the
condor_submit documentation for more details.

Examples

Transfer a file stored in your home directory using HTCondor file transfer:

transfer_path = htmap.TransferPath.cwd() / 'file.txt'

Transfer a local file at an absolute path using HTCondor file transfer:

transfer_path = htmap.TransferPath("/foo/bar/baz.txt")

Get a file from an HTTP server, located at http://htmap.readthedocs.io/en/latest/
_static/htmap-logo.svg:

6.8. File Transfer 83

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://htcondor.readthedocs.io/en/latest/man-pages/condor_submit.html


htmap Documentation, Release 0.6.1

transfer_path = htmap.TransferPath(
path = "en/latest/_static/htmap-logo.svg",
protocol = "http",
location = "htmap.readthedocs.io",

)

or

base_path = htmap.TransferPath(
path = "/",
protocol = "http",
location = "htmap.readthedocs.io",

)
transfer_path = base_path / 'en' / 'latest' / '_static' / 'htmap-logo.svg'

Parameters

• path (Union[TransferPath , PathLike]) – The path to the file or directory to
transfer.

• protocol (Optional[str]) – The protocol to perform for the transfer with. If
set to None (the default), use HTCondor local file transfer.

• location (Optional[str]) – The location to find a remote file when using a
protocol transfer. This could be the address of a server, for example.

htmap.transfer_output_files(*paths)
Informs HTMap about the existence of output files.

Attention: This function is a no-op when executing locally, so you if you’re testing your function
it won’t do anything.

Attention: The files will be moved by this function, so they will not be available in their original
locations.

Parameters
paths (PathLike) – The paths to the output files.

Return type
None

84 Chapter 6. API Reference

https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None


htmap Documentation, Release 0.6.1

6.9 Checkpointing

htmap.checkpoint(*paths)
Informs HTMap about the existence of checkpoint files. This function should be called every time the
checkpoint files are changed, even if they have the same names as before.

Attention: This function is a no-op when executing locally (i.e., not execute-side), so you if you’re
testing your function locally it won’t do anything.

Attention: The files will be copied by this function, so try not to make the checkpoint files too
large.

Parameters
paths (PathLike) – The paths to the checkpoint files.

Return type
None

6.10 Management

These functions help you manage your maps.

htmap.status(maps=None, include_state=True, include_meta=True)
Return a formatted table containing information on the given maps.

Parameters

• maps (Optional[Iterable[Map]]) – The maps to display information on. If
None, displays information on all existing maps.

• include_state (bool) – If True, include information on the state of the map’s
components.

• include_meta (bool) – If True, include information about the map’s memory
usage, disk usage, and runtime.

Return type
str

Returns
table – A text table containing information on the given maps.

htmap.get_tags(pattern=None)
Return a tuple containing the tag for all existing maps, with optional filtering based on a glob-style
pattern.

6.9. Checkpointing 85

https://docs.python.org/3/library/os.html#os.PathLike
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


htmap Documentation, Release 0.6.1

Parameters
pattern (Optional[str]) – A glob-style pattern. Only tags that fit the pattern will
be returned. If None (the default), all tags will be returned.

Return type
Tuple[str, ...]

Returns
tags – A tuple containing the tags that match the pattern.

htmap.load(tag)
Reconstruct a Map from its tag.

Parameters
tag (str) – The tag to search for.

Return type
Map

Returns
map – The result with the given tag.

htmap.load_maps(pattern=None)
Return a tuple containing the Map for all existing maps, with optional filtering based on a glob-style
pattern.

Parameters
pattern (Optional[str]) – A glob-style pattern. Only maps whose tags fit the pat-
tern will be returned. If None (the default), all maps will be returned.

Return type
Tuple[Map, ...]

Returns
maps – A tuple contain the maps whose tags fit the pattern.

htmap.remove(tag, not_exist_ok=True)
Remove the map with the given tag.

Parameters

• tag (str) – The tag to search for and remove.

• not_exist_ok (bool) – If False, raise htmap.exceptions.MapIdNotFound
if the tag doesn’t exist.

Return type
None

htmap.clean(*, all=False)
Clean up transient maps by removing them.

Maps that have never had a tag explicitly set are assigned randomized tags and marked as “transient”.
This command removes maps marked transient (and can also remove all maps, not just transient ones,
if the –all option is passed).

86 Chapter 6. API Reference

https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/fnmatch.html#module-fnmatch
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#tuple
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/fnmatch.html#module-fnmatch
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/constants.html#None


htmap Documentation, Release 0.6.1

Parameters
all (bool) – If True, remove all maps, not just transient ones. Defaults to False.

Return type
List[str]

Returns
cleaned_tags – A list of the tags of the maps that were removed.

6.10.1 Programmatic Status Messages

These functions are useful for generating machine-readable status information.

htmap.status_json(maps=None, include_state=True, include_meta=True, compact=False)
Return a JSON-formatted string containing information on the given maps.

Disk and memory usage are reported in bytes. Runtimes are reported in seconds.

Parameters

• maps (Optional[Iterable[Map]]) – The maps to display information on. If
None, displays information on all existing maps.

• include_state (bool) – If True, include information on the state of the map’s
components.

• include_meta (bool) – If True, include information about the map’s memory
usage, disk usage, and runtime.

• compact (bool) – If True, the JSON will be formatted in the most compact pos-
sible representation.

Return type
str

Returns
json – A JSON-formatted dictionary containing information on the given maps.

htmap.status_csv(maps=None, include_state=True, include_meta=True)
Return a CSV-formatted string containing information on the given maps.

Disk and memory usage are reported in bytes. Runtimes are reported in seconds.

Parameters

• maps (Optional[Iterable[Map]]) – The maps to display information on. If
None, displays information on all existing maps.

• include_state (bool) – If True, include information on the state of the map’s
components.

• include_meta (bool) – If True, include information about the map’s memory
usage, disk usage, and runtime.

Return type
str

6.10. Management 87

https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Iterable
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str


htmap Documentation, Release 0.6.1

Returns
csv – A CSV-formatted table containing information on the given maps.

6.11 Delivery Methods

htmap.register_delivery_method(name, descriptors_func, setup_func=None)
Register a new delivery method with HTMap.

Parameters

• name (str) – The name of the delivery method; this is what the
DELIVERY_METHOD should be set to to use this delivery method.

• descriptors_func (Callable[[str, Path], dict]) – The function that pro-
vides the HTCondor submit descriptors for this delivery method.

• setup_func (Optional[Callable[[str, Path], None]]) – The function that
does any setup necessary to running the map.

Return type
None

6.11.1 Transplant Installs

These functions help you manage your transplant installs.

htmap.transplants()

Return type
Tuple[Transplant, ...]

class htmap.Transplant(hash: str, path: Path, created: datetime, size: int, packages: Tuple[str, ...])
An object that represents metadata information about a transplant install.

Create new instance of Transplant(hash, path, created, size, packages)

hash: str

Alias for field number 0

path: Path

Alias for field number 1

created: datetime

Alias for field number 2

size: int

Alias for field number 3

packages: Tuple[str, ...]

Alias for field number 4

88 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/typing.html#typing.Callable
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/constants.html#Ellipsis
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/datetime.html#datetime.datetime
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/constants.html#Ellipsis


htmap Documentation, Release 0.6.1

classmethod load(path)

Parameters
path (Path) – The path to the transplant install.

Return type
Transplant

Returns
transplant – The Transplant that represents the transplant install.

remove()

htmap.transplant_info()

Return type
str

6.12 Settings

HTMap exposes configurable settings through htmap.settings, which is an instance of the class htmap.
settings.Settings. This settings object manages a lookup chain of dictionaries. The settings object
created during startup contains two dictionaries. The lowest level contains HTMap’s default settings, and the
next level up is constructed from a settings file at ~/.htmaprc. If that file does not exist, an empty dictionary
is used instead. The file should be formatted in TOML.

Alternate settings could be stored in other files or constructed at runtime. HTMap provides tools for saving,
loading, merging, prepending, and appending settings to each other. Each map is search in order, so earlier
settings can flexibly override later settings.

Warning: To entirely replace your settings, do not do htmap.settings = <new settings
object>. Instead, use the htmap.settings.Settings.replace() method. Replacing the settings
by assignment breaks the internal linking between the settings objects and its dependencies.

Hint: These may be helpful when constructing fresh settings:

• HTMap’s base settings are available as htmap.BASE_SETTINGS.

• The settings loaded from ~/.htmaprc are available as htmap.USER_SETTINGS.

class htmap.settings.Settings(*settings)

get(key, default=None)

Return type
Any

6.12. Settings 89

https://docs.python.org/3/library/pathlib.html#pathlib.Path
https://docs.python.org/3/library/stdtypes.html#str
https://github.com/toml-lang/toml
https://docs.python.org/3/library/typing.html#typing.Any


htmap Documentation, Release 0.6.1

to_dict()

Return a single dictionary with all of the settings in this Settings, merged according to the
lookup rules.

Return type
dict

replace(other)
Change the settings of this Settings to be the settings from another Settings.

Return type
None

append(other)
Add a map to the end of the search (i.e., it will be searched last, and be overridden by anything
before it).

Parameters
other (Union[Settings, dict]) – Another settings-like object to insert into the
Settings.

Return type
None

prepend(other)
Add a map to the beginning of the search (i.e., it will be searched first, and override anything
after it).

Parameters
other (Union[Settings, dict]) – Another settings-like object to insert into the
Settings.

Return type
None

classmethod from_settings(*settings)
Construct a new Settings from another Settings.

Return type
Settings

classmethod load(path)
Load a Settings from a file at the given path.

Return type
Settings

save(path)
Save this Settings to a file at the given path.

Return type
None

90 Chapter 6. API Reference

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Union
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


htmap Documentation, Release 0.6.1

6.13 Logging

HTMap exposes a standard Python logging hierarchy under the logger named 'htmap'. Logging configu-
ration can be done by any of the methods described in the documentation.

Here’s an example of how to set up basic console logging:

import logging
import sys

logger = logging.getLogger("htmap")
logger.setLevel(logging.DEBUG)

handler = logging.StreamHandler(stream=sys.stdout)
handler.setLevel(logging.DEBUG)
handler.setFormatter(

logging.Formatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
)

logger.addHandler(handler)

After executing this code, you should be able to see HTMap log messages as you tell it to do things.

Warning: The HTMap logger is not available in the context of the executing map function. Trying to
use it will probably raise exceptions.

6.14 Exceptions

exception htmap.exceptions.HTMapException

Base exception for all htmap exceptions.

exception htmap.exceptions.TimeoutError

An operation has timed out because it took too long.

exception htmap.exceptions.MissingSetting

The requested setting has not been set.

exception htmap.exceptions.OutputNotFound

The requested output file does not exist.

exception htmap.exceptions.NoMapYet

The htmap.MapBuilder does not have an associated htmap.Map yet because it is still inside the with
block.

exception htmap.exceptions.TagAlreadyExists

The requested tag already exists (recover the Map, then either use or delete it).

6.13. Logging 91

https://docs.python.org/3/library/logging.html
https://docs.python.org/3/howto/logging.html#configuring-logging


htmap Documentation, Release 0.6.1

exception htmap.exceptions.InvalidTag

The tag has an invalid character in it.

exception htmap.exceptions.TagNotFound

The requested tag does not exist.

exception htmap.exceptions.EmptyMap

The map contains no inputs, so it wasn’t created.

exception htmap.exceptions.ReservedOptionKeyword

The map option keyword you tried to use is reserved by HTMap for internal use.

exception htmap.exceptions.MisalignedInputData

There is some kind of mismatch between the lengths of the function arguments and the variadic map
options.

exception htmap.exceptions.CannotRetagMap

The map cannot be renamed right now.

exception htmap.exceptions.UnknownPythonDeliveryMethod

The specified Python delivery method has not been registered.

exception htmap.exceptions.MapWasRemoved

This map has been removed, and can no longer be interacted with.

exception htmap.exceptions.InvalidOutputStatus

The output status of the map component was not recognized.

exception htmap.exceptions.MapComponentError

A map component experienced an error during remote execution.

exception htmap.exceptions.MapComponentHeld

A map component has been held by HTCondor.

exception htmap.exceptions.ExpectedError

A map component that contained an OK result was unpacked as if it contained an error.

exception htmap.exceptions.CannotTransplantPython

The Python interpreter you are using cannot be transplanted.

exception htmap.exceptions.CannotRerunComponents

The given components cannot be rerun because they are currently active.

exception htmap.exceptions.InsufficientHTCondorVersion

The version of HTCondor is too low to use a feature.

exception htmap.exceptions.CorruptEventLog

HTMap doesn’t understand what it’s seeing in an event log.

92 Chapter 6. API Reference



htmap Documentation, Release 0.6.1

6.15 Version

htmap.version()

Return a string containing human-readable version information.

Return type
str

htmap.version_info()

Return a tuple of version information: (major, minor, micro, prerelease).

Return type
Tuple[int, int, int, Optional[str], Optional[int]]

6.15. Version 93

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Tuple
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/typing.html#typing.Optional
https://docs.python.org/3/library/functions.html#int


htmap Documentation, Release 0.6.1

94 Chapter 6. API Reference



CHAPTER

SEVEN

CLI REFERENCE

HTMap provides a command line tool called htmap that exposes a subset of functionality focused around
monitoring long-running maps without needing to run Python yourself.

View the available sub-commands by running:

htmap --help # View available commands

Some useful commands are highlighted in the Tips and Tricks section at Separate Job Submis-
sion/Monitoring/Collection.

Here’s the full documentation on all of the available commands:

7.1 htmap

HTMap command line tools.

htmap [OPTIONS] COMMAND [ARGS]...

Options

-v, --verbose

Show log messages as the CLI runs.

--version

Show the version and exit.

95



htmap Documentation, Release 0.6.1

7.1.1 autocompletion

Enable autocompletion for HTMap CLI commands and tags in your shell.

This command should only need to be run once.

Note that your Python environment must be available (i.e., running “htmap” must work) by the time the
autocompletion-enabling command runs in your shell configuration file.

htmap autocompletion [OPTIONS]

Options

--shell <shell>

Required Which shell to enable autocompletion for.

Options
bash | zsh | fish

--force

Append the autocompletion activation command even if it already exists.

--destination <destination>

Append the autocompletion activation command to this file instead of the shell default.

7.1.2 clean

Clean up transient maps by removing them.

Maps that have never had a tag explicitly set are assigned randomized tags and marked as “transient”. This
command removes maps marked transient (and can also remove all maps, not just transient ones, if the –all
option is passed).

htmap clean [OPTIONS]

Options

--all

Remove non-transient maps as well.

96 Chapter 7. CLI Reference



htmap Documentation, Release 0.6.1

7.1.3 components

Print out the status of the individual components of a map.

htmap components [OPTIONS] TAG

Options

--status <status>

Print out only components that have this status. Case-insensitive. If not passed, print out the stats of
all components (the default).

Options
UNKNOWN | UNMATERIALIZED | IDLE | RUNNING | REMOVED | COM-
PLETED | HELD | SUSPENDED | ERRORED

--color, --no-color

Toggle colorized output (defaults to colorized).

Arguments

TAG

Required argument

7.1.4 edit

Edit a map’s attributes (e.g., its memory request).

Edits do not affect components that are currently running. To “restart” components so that they see the new
attribute value, consider vacating their map (see the vacate command).

htmap edit [OPTIONS] COMMAND [ARGS]...

disk

Set a map’s requested disk.

Edits do not affect components that are currently running. To “restart” components so that they see the new
attribute value, consider vacating their map (see the vacate command).

htmap edit disk [OPTIONS] TAG DISK

7.1. htmap 97



htmap Documentation, Release 0.6.1

Options

--unit <unit>

Options
KB | MB | GB

Arguments

TAG

Required argument

DISK

Required argument

memory

Set a map’s requested memory.

Edits do not affect components that are currently running. To “restart” components so that they see the new
attribute value, consider vacating their map (see the vacate command).

htmap edit memory [OPTIONS] TAG MEMORY

Options

--unit <unit>

Options
MB | GB

Arguments

TAG

Required argument

MEMORY

Required argument

98 Chapter 7. CLI Reference



htmap Documentation, Release 0.6.1

7.1.5 errors

Show execution error reports for map components.

htmap errors [OPTIONS] [TAGS]...

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

--limit <limit>

The maximum number of error reports to show (0, the default, for no limit).

Arguments

TAGS

Optional argument(s)

7.1.6 hold

This command holds a map. The components of the map will not be allowed to run until released (see the
release command).

HTCondor may itself hold your map components if it detects that something has gone wrong with them.
Resolve the underlying problem, then use the release command to allow the components to run again.

htmap hold [OPTIONS] [TAGS]...

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

7.1. htmap 99



htmap Documentation, Release 0.6.1

Arguments

TAGS

Optional argument(s)

7.1.7 logs

Print the path to HTMap’s current log file.

The log file rotates, so if you need to go further back in time, look at the rotated log files (stored next to the
current log file).

htmap logs [OPTIONS]

Options

--view, --no-view

If enabled, display the contents of the current log file instead of its path (defaults to disabled).

7.1.8 path

Get paths to parts of HTMap’s data storage for a map.

This command is mostly useful for debugging or interfacing with other tools. The tag argument is a map tag,
optionally followed by a colon (:) and a target.

If you have a map tagged “foo”, these commands would give the following paths (command -> path):

htmap path foo -> the path to the map directory
htmap path foo:map -> also the path to the map directory
htmap path foo:tag -> the path to the map’s tag file
htmap path foo:events -> the map’s event log
htmap path foo:logs -> directory containing component stdout and stderr
htmap path foo:inputs -> directory containing component inputs
htmap path foo:outputs -> directory containing component outputs

htmap path [OPTIONS] TAG

100 Chapter 7. CLI Reference



htmap Documentation, Release 0.6.1

Arguments

TAG

Required argument

7.1.9 pause

This command pauses a map. The running components of a paused map will keep their resource claims, but
will stop actively executing. The map can be un-paused by resuming it (see the resume command).

htmap pause [OPTIONS] [TAGS]...

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

Arguments

TAGS

Optional argument(s)

7.1.10 reasons

Print the hold reasons for map components.

HTCondor may hold your map components if it detects that something has gone wrong with them. Resolve
the underlying problem, then use the release command to allow the components to run again.

htmap reasons [OPTIONS] [TAGS]...

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

7.1. htmap 101



htmap Documentation, Release 0.6.1

Arguments

TAGS

Optional argument(s)

7.1.11 release

This command releases a map, undoing holds. The held components of a released map will become idle
again.

HTCondor may itself hold your map components if it detects that something has gone wrong with them.
Resolve the underlying problem, then use this command to allow the components to run again.

htmap release [OPTIONS] [TAGS]...

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

Arguments

TAGS

Optional argument(s)

7.1.12 remove

This command removes a map from the Condor queue. Functionally, this command aborts a job.

This function will completely remove a map from the Condor queue regardless of job state (running, execut-
ing, waiting, etc). All data associated with a removed map is permanently deleted.

htmap remove [OPTIONS] [TAGS]...

102 Chapter 7. CLI Reference



htmap Documentation, Release 0.6.1

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

--force

Do not wait for HTCondor to remove the map components before removing local data.

Arguments

TAGS

Optional argument(s)

7.1.13 rerun

Rerun (part of) a map from scratch.

The selected components must be completed or errored. See the subcommands of this command group for
different ways to specify which components to rerun.

Any existing output of rerun components is removed; they are re-submitted to the HTCondor queue with
their original map options (i.e., without any subsequent edits).

htmap rerun [OPTIONS] COMMAND [ARGS]...

components

Rerun selected components from a single map.

Any existing output of re-run components is removed; they are re-submitted to the HTCondor queue with
their original map options (i.e., without any subsequent edits).

htmap rerun components [OPTIONS] TAG [COMPONENTS]...

Arguments

TAG

Required argument

COMPONENTS

Optional argument(s)

7.1. htmap 103



htmap Documentation, Release 0.6.1

map

Rerun all of the components of any number of maps.

Any existing output of re-run components is removed; they are re-submitted to the HTCondor queue with
their original map options (i.e., without any subsequent edits).

htmap rerun map [OPTIONS] [TAGS]...

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

Arguments

TAGS

Optional argument(s)

7.1.14 resume

This command resumes a map (reverses the pause command). The running components of a resumed map
will resume execution on their claimed resources.

htmap resume [OPTIONS] [TAGS]...

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

104 Chapter 7. CLI Reference



htmap Documentation, Release 0.6.1

Arguments

TAGS

Optional argument(s)

7.1.15 retag

Change the tag of an existing map.

Retagging a map makes it not transient. Maps that have never had an explicit tag given to them are transient
and can be easily cleaned up via the clean command.

htmap retag [OPTIONS] TAG NEW

Arguments

TAG

Required argument

NEW

Required argument

7.1.16 set

Change a setting in your ~/.htmaprc file.

htmap set [OPTIONS] SETTING VALUE

Arguments

SETTING

Required argument

VALUE

Required argument

7.1.17 settings

Print HTMap’s current settings.

By default, this command shows the merger of your user settings from ~/.htmaprc and HTMap’s own default
settings. To show only your user settings, pass the –user option.

htmap settings [OPTIONS]

7.1. htmap 105



htmap Documentation, Release 0.6.1

Options

--user

Display only user settings (the contents of ~/.htmaprc).

7.1.18 status

Print a status table for all of your maps.

Transient maps are prefixed with a leading “*”.

htmap status [OPTIONS]

Options

--state, --no-state

Toggle display of component states (defaults to enabled).

--meta, --no-meta

Toggle display of map metadata like memory, runtime, etc. (defaults to enabled).

--format <format>

Select output format: plain text, JSON, compact JSON, or CSV (defaults to plain text)

Options
text | json | json_compact | csv

--live, --no-live

Toggle live reloading of the status table (defaults to not live).

--color, --no-color

Toggle colorized output (defaults to colorized).

7.1.19 stderr

Look at the stderr for a map component.

htmap stderr [OPTIONS] TAG COMPONENT

106 Chapter 7. CLI Reference



htmap Documentation, Release 0.6.1

Options

--timeout <timeout>

How long to wait (in seconds) for the file to be available. If not set (the default), wait forever.

Arguments

TAG

Required argument

COMPONENT

Required argument

7.1.20 stdout

Look at the stdout for a map component.

htmap stdout [OPTIONS] TAG COMPONENT

Options

--timeout <timeout>

How long to wait (in seconds) for the file to be available. If not set (the default), wait forever.

Arguments

TAG

Required argument

COMPONENT

Required argument

7.1.21 tags

Print the tags of existing maps.

htmap tags [OPTIONS]

7.1. htmap 107



htmap Documentation, Release 0.6.1

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Patterns must be enclosed in “”. Pass -p multiple
times for multiple patterns.

7.1.22 transplants

Manage transplant installs.

htmap transplants [OPTIONS] COMMAND [ARGS]...

info

Display information on available transplant installs.

htmap transplants info [OPTIONS]

remove

Remove a transplant install by index.

htmap transplants remove [OPTIONS] INDEX

Arguments

INDEX

Required argument

7.1.23 vacate

This command vacates a map. The running components of a vacated map will give up their claimed resources
and become idle again.

Checkpointing maps will still have access to their last checkpoint, and will resume from it as if execution
was interrupted for any other reason.

htmap vacate [OPTIONS] [TAGS]...

108 Chapter 7. CLI Reference



htmap Documentation, Release 0.6.1

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

Arguments

TAGS

Optional argument(s)

7.1.24 version

Print HTMap and HTCondor Python bindings version information.

htmap version [OPTIONS]

7.1.25 wait

Wait for maps to complete.

htmap wait [OPTIONS] [TAGS]...

Options

-p, --pattern <pattern>

Act on maps whose tags match glob-style patterns. Pass -p multiple times for multiple patterns.

--all

Act on all maps.

Arguments

TAGS

Optional argument(s)

7.1. htmap 109



htmap Documentation, Release 0.6.1

110 Chapter 7. CLI Reference



CHAPTER

EIGHT

SETTINGS

HTMap’s settings are controlled by a global object which you can access as htmap.settings. For more
information on how this works, see htmap.settings.Settings.

Users can provide custom default settings by putting them in a file in their home directory named .htmaprc.
The file is in TOML format.

HTMap can also read certain settings from the environment. When this is possible, it is noted in the descrip-
tion of the setting.

The precedence order is that runtime settings override .htmaprc settings, which override environment set-
tings, which override built-in defaults.

HTMap’s settings are organized into groupings based on TOML headers. The settings inside each group are
discussed in the following sections.

At runtime, settings can be found via dotted paths that correspond to the section heads. Here, I’ll give the
dotted paths - if they’re in the file instead, each dot is a header.

Here is an example .htmaprc file:

DELIVERY_METHOD = "docker"

[MAP_OPTIONS]
REQUEST_MEMORY = "250MB"

[DOCKER]
IMAGE = "python:latest"

The equivalent runtime Python commands to set those settings would be

import htmap

htmap.settings["DELIVERY_METHOD"] = "docker"
htmap.settings["MAP_OPTIONS.REQUEST_MEMORY"] = "250MB"
htmap.settings["DOCKER.IMAGE"] = "python:latest"

111

https://github.com/toml-lang/toml


htmap Documentation, Release 0.6.1

8.1 Settings

These are the top-level settings. They do not belong to any header.

HTMAP_DIR - the path to the directory to use as the HTMap directory. If not given, defaults to ~/.htmap.

DELIVERY_METHOD - the name of the delivery method to use. The different delivery methods are discussed
in Dependency Management. Defaults to docker. Inherits the environment variable HTMAP_DELIVERY.

WAIT_TIME - how long to wait between polling for component statuses, files existing, etc. Measured in
seconds. Defaults to 1 (1 second).

CLI - set to True automatically when HTMap is being used from the CLI. Defaults to False.

8.1.1 MAP_OPTIONS

Any settings in this section are passed to every MapOption as keyword arguments.

8.1.2 HTCONDOR

SCHEDULER - the address of the HTCondor scheduler (see htcondor.Schedd). If set to None, HTMap
discovers the local scheduler automatically. Defaults to None. Inherits the environment variable
HTMAP_CONDOR_SCHEDULER.

COLLECTOR - the address of the HTCondor collector (see htcondor.Collector). If set to None,
HTMap discovers the local collector automatically. Defaults to None. Inherits the environment variable
HTMAP_CONDOR_COLLECTOR.

8.1.3 DOCKER

These settings control how the docker delivery method works.

IMAGE - the path to the Docker image to run components with. Defaults to 'continuumio/anaconda3:
latest'. If the environment variable HTMAP_DOCKER_IMAGE is set, that will be used as the default instead.

8.1.4 SINGULARITY

These settings control how the singularity delivery method works.

IMAGE - the path to the Singularity image to run components with. Defaults to 'docker://continuumio/
anaconda3:latest'. If the environment variable HTMAP_SINGULARITY_IMAGE is set, that will be used as
the default instead.

112 Chapter 8. Settings



htmap Documentation, Release 0.6.1

8.1.5 TRANSPLANT

These settings control how the transplant delivery method works.

DIR - the path to the directory where the zipped Python install will be cached. Defaults to a subdirectory of
HTMAP_DIR named transplants.

ALTERNATE_INPUT_PATH - a string that will be used in the HTCondor transfer_input_files option
instead of the local file path. If set to None, the local path will be used (the default). This can be used to
override the default file transfer mechanism.

ASSUME_EXISTS - if set to True, assume that the zipped Python install already exists. Most likely, you will
need to set ALTERNATE_INPUT_PATH to an existing zipped install. Defaults to False.

8.1. Settings 113



htmap Documentation, Release 0.6.1

114 Chapter 8. Settings



CHAPTER

NINE

DEPENDENCY MANAGEMENT

Dependency management for Python programs is a thorny issue in general, and running code on computers
that you don’t own is even thornier. HTMap provides several methods for ensuring that the software that
your code depends on is available for your map components. This could include other Python packages like
numpy or tensorflow, or external software like gcc.

There are two halves of the dependency management game. The first is on “your” computer, which we call
submit-side. This could be your laptop running a personal HTCondor pool, or an HTCondor “submit node”
that you ssh to, or whatever other way you access your HTCondor pool. The other side is execute-side,
which isn’t really a single place: it is all of the execute nodes in the pool that your map components might
run on.

Submit-side dependency management can be handled using standard Python package management tools. We
recommend using miniconda as your package manager (https://docs.conda.io/en/latest/miniconda.html).

HTMap itself requires that execute-side can run a Python script using a Python install that also has htmap
installed. That Python installation also needs whatever other packages your code needs to run. For example,
if you import numpy in your code, you need to have numpy installed execute-side.

As mentioned above, HTMap provides several “delivery methods” for getting that Python installation to the
execute location. The built-in delivery methods are

• docker - runs in a (possibly user-supplied) Docker container.

• singularity - runs in a (possibly user-supplied) Singularity container.

• shared - runs with the same Python installation used submit-side.

• assume - assumes that the dependencies have already been installed at the execute location.

• transplant - copy the submit-side Python installation to the execute location.

More details on each of these methods can be found below.

The default delivery method is docker, with the default image htcondor/htmap-exec:<version>, where
version will match the version of HTMap you are using submit-side. If your pool can run Docker jobs and
your Python code does not depend on any custom packages (i.e., you never import any modules that you
wrote yourself), this default behavior will likely work for you without requiring any changes. See the section
below on Docker if this isn’t the case!

115

https://docs.conda.io/en/latest/miniconda.html


htmap Documentation, Release 0.6.1

Attention: HTMap can transfer inputs and outputs between different minor versions of Python 3, but it
can’t magically make features from later Python versions available. For example, if you run Python 3.6
submit-side you can use f-strings in your code. But if you use Python 3.5 execute-side, your code will
hit syntax errors because f-strings were not added until Python 3.6. We don’t actually test cross-version
transfers though, and we recommend running exactly the same version of Python on submit and execute.

HTMap cannot transfer inputs and outputs between different versions of cloudpickle. Ensure that you
have the same version of cloudpickle installed everywhere.

If you see an exception on a component related to cloudpickle.load, this is the most likely culprit.
Note that you may need to manually upgrade/downgrade your submit-side or execute-side cloudpickle.

9.1 Run Inside a Docker Container

In your ~/.htmaprc file:

DELIVERY_METHOD = "docker"

[DOCKER]
IMAGE = "<repository>/<image>:<tag>"

At runtime:

htmap.settings["DELIVERY_METHOD"] = "docker"
htmap.settings["DOCKER.IMAGE"] = "<repository>/<image>:<tag>"

In this mode, HTMap will run inside a Docker image that you provide. Remember that this Docker image
needs to have the htmap module installed. The default Docker image is htcondor/htmap-exec, which is based
on Python 3 and has many useful packages pre-installed.

If you want to use your own Docker image, just change the 'DOCKER.IMAGE' setting. Your Docker image
needs to be pushed back to Docker Hub (or some other Docker image registry that your HTCondor pool can
access) to be usable. For example, a very simple Dockerfile that can be used with HTMap is

FROM python:3

RUN pip install --no-cache-dir htmap

This would create a Docker image with the latest versions of Python 3 and htmap installed. From here you
could install more Python dependencies, or add more layers to account for other dependencies.

Attention: More information on building Docker images for use with HTMap can be found in the
Docker Image Cookbook.

116 Chapter 9. Dependency Management

https://hub.docker.com/r/htcondor/htmap-exec/
https://hub.docker.com/


htmap Documentation, Release 0.6.1

Warning: This delivery mechanism will only work if your HTCondor pool supports Docker jobs! If it
doesn’t, you’ll need to talk to your pool administrators or use a different delivery mechanism.

9.2 Run Inside a Singularity Container

In your ~/.htmaprc file:

DELIVERY_METHOD = "singularity"

[SINGULARITY]
IMAGE = "<image>"

At runtime:

htmap.settings["DELIVERY_METHOD"] = "singularity"
htmap.settings["SINGULARITY.IMAGE"] = "<image>"

In this mode, HTMap will run inside a Singularity image that you provide. Remember that this Singularity
image needs to have the cloudpickle module installed.

Singularity can also use Docker images. Specify a Docker Hub image as htmap.
settings['SINGULARITY.IMAGE'] = "docker://<repository>/<image>:<tag>" to download a
Docker image from DockerHub and automatically use it as a Singularity image.

For consistency with Docker delivery, the default Singularity image is
docker://continuumio/anaconda3:latest, which has many useful packages pre-installed.

If you want to use your own Singularity image, just change the 'SINGULARITY.IMAGE' setting.

Warning: This delivery mechanism will only work if your HTCondor pool supports Singularity jobs!
If it doesn’t, you’ll need to talk to your pool administrators or use a different delivery mechanism.

Note: When using this delivery method, HTMap will discover python3 on the system PATH and use that
to run your code.

Warning: This delivery method relies on the directory /htmap/scratch either existing in the Sin-
gularity image, or Singularity being able to run with overlayfs. If you get a stderr message from
Singularity about a bind mount directory not existing, that’s the problem.

9.2. Run Inside a Singularity Container 117

https://hub.docker.com/r/continuumio/anaconda3/


htmap Documentation, Release 0.6.1

9.3 Run With a Shared Python Installation

In your ~/.htmaprc file:

DELIVERY_METHOD = "shared"

At runtime:

htmap.settings["DELIVERY_METHOD"] = "shared"

In this mode, HTMap will run your components using the same interpreter being used submit-side. This
requires that that the submit-side Python interpreter be “visible” from the execute location, which is usually
done in one of two ways:

1. The execute location is the submit location (i.e., they are the same physical computer).

2. The Python installation is stored on a shared filesystem, such that submit and execute can both see the
same file paths.

Either way, the practical requirement to use this delivery method is that the path to the Python interpreter (i.e.,
python -c "import sys, print(sys.executable)") is the same both submit-side and execute-side.

9.4 Assume Dependencies are Present

In your ~/.htmaprc file:

DELIVERY_METHOD = "assume"

At runtime:

htmap.settings["DELIVERY_METHOD"] = "assume"

In this mode, HTMap assumes that a Python installation with all Python dependencies is already present.
This will almost surely require some additional setup by your HTCondor pool’s administrators.

9.5 Transplant Existing Python Install

In your ~/.htmaprc file:

DELIVERY_METHOD = "transplant"

At runtime:

htmap.settings["DELIVERY_METHOD"] = "transplant"

If you are running HTMap from a standalone Python install (like an Anaconda installation), you can use this
delivery mechanism to transfer a copy of your entire Python install. All locally-installed packages (including
pip -e “editable” installs) will be available.

118 Chapter 9. Dependency Management



htmap Documentation, Release 0.6.1

For advanced transplant functionality, see TRANSPLANT .

Note: The first time you run a map after installing/removing packages, you will need to wait while HTMap
re-zips your installation. Subsequent maps will use the cached version.

HTMap uses pip to check whether the cached Python is current, so make sure that pip is installed in your
Python.

Warning: This mechanism does not work with system Python installations (which you shouldn’t be
using anyway!).

Note: When using the transplant method the transplanted Python installation will be used to run the com-
ponent, regardless of any other Python installations that might exist execute-side.

9.5. Transplant Existing Python Install 119



htmap Documentation, Release 0.6.1

120 Chapter 9. Dependency Management



CHAPTER

TEN

VERSION HISTORY

10.1 v0.6.1

This version is a drop-in replacement for v0.6.0, except that it relaxes the version requirements for several
dependencies to accommodate upcoming changes to the pip dependency resolver.

10.1.1 Known Issues

• HTMap does not currently allow “directory content transfers”, which is an HTCondor feature where
naming a directory in transfer_input_files with a trailing slash transfers the contents of the di-
rectory, not the directory itself. (If you try it, the directory itself will be transferred, as if you had not
used a trailing slash). Issue: #215

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: #129

10.2 v0.6.0

The big new features in this release are:

• Improved support for input and output file transfer (inputs/outputs can come from/be sent to remote
locations, i.e., not the submit machine).

• A new delivery method, shared, where HTMap will use the same Python executable detected submit-
side when executing (this supports HTCondor pools that use shared filesystems to make a Python
installation universally available).

121

https://pyfound.blogspot.com/2020/03/new-pip-resolver-to-roll-out-this-year.html
https://github.com/htcondor/htmap/issues/215
https://github.com/htcondor/htmap/issues/129


htmap Documentation, Release 0.6.1

10.2.1 New Features/Improvements

• Add the shared delivery method, which supports HTCondor pools that use shared filesystems to make
Python installations available universally. Suggested by Duncan Macleod. Issues/PRs: #195, #198,
#200

• HTMap now supports getting input files from remote destinations (i.e., not from the submit machine)
via existing input file auto-discovery. Just use the revised TransferPath in your mapped function
arguments, and HTMap will arrange for the file to be transferred to your map component! PR: #216

• HTMap now supports sending output files to destinations that are not the submit machine via HTCon-
dor’s transfer_output_remapsmechanism. Output files can be sent to various locations, such as an
S3 service. See the new output_remaps argument of MapOptions and the revised TransferPath ,
as well as the new tutorial Transferring Output to Other Places for more details on how to use this
feature. PR: #216

• Massive documentation upgrades courtesy of Scott Sievert! Issues/PRs: #208, #191, #202, #221

• The HTMap CLI (normally accessed by running htmap) can now also be accessed by running python
-m htmap. Issue: #190

• The HTMap CLI now supports autocompletion on commands and tags. Run htmap
autocompletion from the command line to add the necessary setup to your shell startup script.

• The HTMap CLI logs command now has a --view option which, instead of just printing the path to
the HTMap log file, displays its contents.

10.2.2 Changed/Deprecated Features

• htmap.Map.exists has replaced htmap.Map.is_removed. It has exactly the opposite semantics (it
is only True if the map has not been successfully removed). PR: #221

• htmap.ComponentStatus is now a subclass of str, so (for example) "COMPLETED" can be used in
place of htmap.ComponentStatus.COMPLETED.

• Item access ([]) on Map.stdout, Map.stderr, and Map.output_files is now non-blocking and
will raise FileNotFound exceptions if accessed before available. The blocking API (with a timeout)
is still available via the get method.

• The HTMap CLI version command now also prints HTCondor Python bindings version information.
Added htmap --version that only prints HTMap version information.

• Several HTMap CLI commands now support explicit enable/disable flags instead of just one or the
other. The default behaviors were not changed.

• The name of the function used to register delivery methods changed to
register_delivery_method() (from register_delivery_mechanism).

122 Chapter 10. Version History

https://github.com/htcondor/htmap/issues/195
https://github.com/htcondor/htmap/issues/198
https://github.com/htcondor/htmap/pull/200
https://github.com/htcondor/htmap/pull/216
https://github.com/htcondor/htmap/pull/216
https://github.com/stsievert
https://github.com/htcondor/htmap/issues/208
https://github.com/htcondor/htmap/pull/191
https://github.com/htcondor/htmap/pull/202
https://github.com/htcondor/htmap/pull/221
https://github.com/htcondor/htmap/issues/190
https://github.com/htcondor/htmap/pull/221
https://docs.python.org/3/library/stdtypes.html#str


htmap Documentation, Release 0.6.1

10.2.3 Bug Fixes

• HTMap is now less sensitive to job event logs becoming corrupted.

• Type hints are now more correct on more functions (but not fully correct on all functions, bear with
us!).

10.2.4 Known Issues

• HTMap does not currently allow “directory content transfers”, which is an HTCondor feature where
naming a directory in transfer_input_files with a trailing slash transfers the contents of the di-
rectory, not the directory itself. (If you try it, the directory itself will be transferred, as if you had not
used a trailing slash). Issue: #215

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: #129

10.3 v0.5.1

10.3.1 New Features

10.3.2 Deprecated Features

10.3.3 Bug Fixes

• Maps can now be force-removed even if the schedd cannot be contacted. Graceful removal still requires
contact with the schedd. Issue: https://github.com/htcondor/htmap/issues/186

10.3.4 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

10.3. v0.5.1 123

https://github.com/htcondor/htmap/issues/215
https://github.com/htcondor/htmap/issues/129
https://github.com/htcondor/htmap/issues/186
https://github.com/htcondor/htmap/issues/129


htmap Documentation, Release 0.6.1

10.4 v0.5.0

10.4.1 New Features

• HTMap CLI commands that operate on tags can now pattern-match for tags using glob syntax.
Try adding -p "<pattern>" to commands like htmap remove or htmap release! Issue: https:
//github.com/htcondor/htmap/issues/159

• Component status tracking is now preserved between sessions, so it won’t be performed from scratch
every time. This will only work if the HTCondor Python bindings version is 8.9.3 or greater.
You can upgrade your bindings version roughly-independently of HTMap by running pip install
--upgrade htcondor. Issue: https://github.com/htcondor/htmap/issues/166

• htmap.Map, htmap.MapStdOut, htmap.MapStdErr, and htmap.MapOutputFiles now all support
in the in operator to check if a component index is in the map.

10.4.2 Deprecated Features

• The various iteration methods on htmap.Map no longer have a callback argument.

10.4.3 Bug Fixes

• It should now be much harder to accidentally get a dangling, inaccessible map due to an interrupted
remove. Issue: https://github.com/htcondor/htmap/issues/127

• When an execution errors occurs, the exception and traceback will be printed to stderr execute-side
(in addition to being brought back submit-side). This should make some debugging patterns work as
expected. Issue: https://github.com/htcondor/htmap/issues/178

• The CLI command htmap status --live now has much better behavior when the table width is
nearly the width of the terminal. It should now never wrap unless the table is actually wider than the
terminal, instead of a few characters before the actual width.

• HTMap now handles late materialized jobs much more smoothly: maps with unmaterialized com-
ponents can be removed, and various CLI commands that output color won’t fail when acting on
maps with unmaterialized components. However, unmaterialized components do not show as IDLE,
which mirrors the behavior of condor_q. This does make it hard to know how many compo-
nents are in a late-materialized map at a glance; we are thinking about how to address this. Issue:
https://github.com/htcondor/htmap/issues/158

124 Chapter 10. Version History

https://github.com/htcondor/htmap/issues/159
https://github.com/htcondor/htmap/issues/159
https://github.com/htcondor/htmap/issues/166
https://github.com/htcondor/htmap/issues/127
https://github.com/htcondor/htmap/issues/178
https://github.com/htcondor/htmap/issues/158


htmap Documentation, Release 0.6.1

10.4.4 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

10.5 v0.4.4

10.5.1 New Features

10.5.2 Bug Fixes

• In execution error reports, local variables with very long string forms are now cut down to a smaller
size.

10.5.3 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

10.6 v0.4.3

10.6.1 New Features

10.6.2 Bug Fixes

• CLI stdout and stderr commands were broken, but are now fixed.

• Add the missing parts of the /.singularity.d directory that will make v0.4.2 Singularity support actually
work.

10.5. v0.4.4 125

https://github.com/htcondor/htmap/issues/129
https://github.com/htcondor/htmap/issues/129


htmap Documentation, Release 0.6.1

10.6.3 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

10.7 v0.4.2

10.7.1 New Features

10.7.2 Bug Fixes

• Map.errors and Map.error_reports() now work when there is a mix of holds and errors in the map.
Previously, held components would cause both of these to raise MapComponentHeld when trying to
access them in that situation. Issue: https://github.com/htcondor/htmap/issues/165

• Requirements statement merging was broken when any of the three sources of requirements (settings,
function-level map options, and individual-map map options) were not given. Requirements from
all source are now properly merged, regardless of whether any of them actually exist. Issue: https:
//github.com/htcondor/htmap/issues/168

• Top-level settings that were dictionaries (like MAP_OPTIONS) did not behave correctly when elements
of them were set; they did not inherit the old settings. These kinds of settings are now properly in-
herited, but expect breaking changes in the Settings API next release to resolve the underlying issues.
Issue: https://github.com/htcondor/htmap/issues/169

• The htmap-exec Docker image should now cleanly export to Singularity. Issue: https://github.com/
htcondor/htmap/issues/173

10.7.3 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

126 Chapter 10. Version History

https://github.com/htcondor/htmap/issues/129
https://github.com/htcondor/htmap/issues/165
https://github.com/htcondor/htmap/issues/168
https://github.com/htcondor/htmap/issues/168
https://github.com/htcondor/htmap/issues/169
https://github.com/htcondor/htmap/issues/173
https://github.com/htcondor/htmap/issues/173
https://github.com/htcondor/htmap/issues/129


htmap Documentation, Release 0.6.1

10.8 v0.4.1

10.8.1 New Features

10.8.2 Bug Fixes

• Fixed a bug where maps submitted with late materialization would choke on the “cluster submit” event
when reading their event log. Band-aided for now.

10.8.3 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

10.9 v0.4.0

10.9.1 New Features

• HTMap can now transfer output files! See the new recipe: Output Files and the new htmap.
transfer_output_files() function.

• HTMap’s default Docker image is now htcondor/htmap-exec, which is produced from a Dockerfile
in the HTMap git repository. It is based on continuumio/anaconda3, with htmap itself installed
as well. Issue: https://github.com/htcondor/htmap/issues/152

• Redid htmap.Map stdout and stderr. They are now attributes that represent sequences over the
stdout and stderr from the map components, as strings, respectively.

• Acts and Edits on Maps that are not “active” (i.e., have components in the HTCondor queue) are now
no-ops. Includes a new htmap.Map.is_active property, which is True if any components are still
in the queue. Issue: https://github.com/htcondor/htmap/issues/145

10.9.2 Bug Fixes

10.9.3 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

10.8. v0.4.1 127

https://github.com/htcondor/htmap/issues/129
https://github.com/htcondor/htmap/issues/152
https://github.com/htcondor/htmap/issues/145


htmap Documentation, Release 0.6.1

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

10.10 v0.3.2

10.10.1 New Features

10.10.2 Bug Fixes

• Hopefully finally resolved a recurring issue with checkpoint directories being returned to the submit
node after execution errors. Issue: https://github.com/htcondor/htmap/issues/128

• htmap.Map.error_reports() can now get error reports while part of a map is still running.

10.10.3 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

10.11 v0.3.1

10.11.1 New Features

10.11.2 Bug Fixes

• Live status display will no longer explode if you remove a map out from under it. Issue: https://github.
com/htcondor/htmap/issues/144

• Fix new htmap rerun command.

10.11.3 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

128 Chapter 10. Version History

https://github.com/htcondor/htmap/issues/129
https://github.com/htcondor/htmap/issues/128
https://github.com/htcondor/htmap/issues/129
https://github.com/htcondor/htmap/issues/144
https://github.com/htcondor/htmap/issues/144
https://github.com/htcondor/htmap/issues/129


htmap Documentation, Release 0.6.1

10.12 v0.3.0

10.12.1 New Features

• Revised internals on how error information is returned from execute nodes. HTMap now detects run-
time errors during component status checks (without too much overhead).

• Add singularity delivery method. More revisions needed to use best practices, but it works. Expect
major changes in the future. . .

• Add htmap components CLI command, which can print out individual component statuses for a
map. For example, htmap components <tag> will print out all of the components for a map and
their statuses. htmap components --status ERRORED <tag> will print out only the components
whose status is ERRORED.

• Some execution errors (especially the kind that result in output not being produced) are now turned
into holds by using the submit descriptor ON_EXIT_HOLD.

• Reworked CLI rerun command. It now has separate sub-commands for rerunning entire maps or only
certain components.

10.12.2 Bug Fixes

10.12.3 Known Issues

• Execution errors that result in the job being terminated but no output being produced are still not
handled entirely gracefully. Right now, the component state will just show as ERRORED, but there
won’t be an actual error report.

• Map component state may become corrupted when a map is manually vacated. Force-removal may
be needed to clean up maps if HTCondor and HTMap disagree about the state of their components.
Issue: https://github.com/htcondor/htmap/issues/129

10.12. v0.3.0 129

https://github.com/htcondor/htmap/issues/129


htmap Documentation, Release 0.6.1

130 Chapter 10. Version History



CHAPTER

ELEVEN

CONTRIBUTING AND DEVELOPING

HTMap is open to contributions! Please feel free to submit a Pull Request on GitHub. If you contribute to
HTMap, please add your name to the CONTRIBUTORS file in the repository root (if you want to be listed).

Development Environment
How to set up an environment for development and testing.

HTMap Innards
How HTMap does what it does.

How to Release a New HTMap Version
How to release a new version of HTMap.

11.1 HTMap Innards

11.1.1 Overview

HTMap turns Python functions into HTCondor jobs. There are two levels of wrapping that it does: the func-
tion call, with its inputs and outputs (including file transfer) and any possible errors, are implicitly wrapped,
but most other HTCondor features, like resource requests and custom submit descriptors, are presented more
directly (though still with a Python-oriented interface).

The distinction between these two levels was chosen to provide the maximum amount of “do the expected
thing” with the Python parts of running the job while allowing maximum flexibility for the HTCondor parts
of the running job. There is no hard line, and different parts of this have moved back and forth over the line
during development (namely file transfer, but at one point resource requests were also treated specially).

11.1.2 Guiding Principles

• The only identifying piece of information about a map a user should ever need is a tag.

• Users should never have to directly interact with the filesystem to look at any information about their
map.

• We should store as little state as possible in memory. Recalculating state of anything but the very
largest maps is very fast.

131

https://github.com/htcondor/htmap/pulls


htmap Documentation, Release 0.6.1

• Any state we do store should be duplicated on disk immediately. It should be possible to resubmit (any
part of) a map based only on information stored on disk.

11.1.3 Moving Things Around

HTMap relies on cloudpickle to move data back and forth the submit node and execute nodes. It pickles the
Python function that the user provides as well as all of the input, then turns around and submits an HTCondor
job cluster using HTCondor’s Python bindings. Instead of directly running user scripts, HTMap uses a script
that it controls as the HTCondor executable. It hands the user back an object that can be used to look at the
output of the function as well as control the execution of the underlying cluster jobs.

11.1.4 The run Subdirectory

For basic functionality, HTMap itself does not need to be installed on the execute node where jobs it creates
run. This offers the advantage of being using to use Docker images that only contain cloudpickle (which
is many, because it’s installed as part of the Anaconda distribution) without modification. Currently, if you
want to use checkpointing or output file transfer, you must also install HTMap execute-side. In practice, we
expect people to install HTMap in their execute image, and all of the instructions in the docs say to do so.

To accomplish this decoupling, HTMap uses a Python script as its HTCondor executable that has no
dependencies except the Python standard library and cloudpickle. This script is stored inside the
library at htmap/run/run.py. The transplant delivery method wraps this script with htmap/run/
run_with_transplant.sh, a bash script that handles unpacking the transplanted install. A similar script
exists for Singularity.

It is critical that the run.py script make all possible efforts to exit without an error. If the script itself
generates an error, it tends to become very difficult for users to understand what went wrong. For example,
we used to import cloudpickle in the bag of imports at the top of the script. If cloudpickle wasn’t
present in the execute image, the script would immediately bail out and HTMap wouldn’t understand why;
the user would have to inspect the stderr of the map component (which also wasn’t directly supported at
the time) to understand what went wrong.

11.1.5 Data Model

Each map is tied to a map directory, which is named by a UUID. The map directories are stored in a subdi-
rectory of the HTMap directory. The HTMap directory is located according to settings['HTMAP_DIR']
(default ~/.htmap).

The human-readable name of each map is its tag. Tags are stored in a different subdirectory of the HTMap
directory, which acts a file-based map between tags and the names of the map directories. Each tag file’s
name is that map’s tag, and the file’s contents are the name of the map directory.

All input, output, and HTCondor metadata (event logs, for example) for a map is stored in its map directory.
A single input/output pair is a component, and the components of a map are just referred to by their index
in the input iterable.

132 Chapter 11. Contributing and Developing

https://github.com/cloudpipe/cloudpickle


htmap Documentation, Release 0.6.1

11.1.6 Serializing and Deserializing Data

HTMap uses a wide variety of data serialization formats, depending on what needs to be stored. The names
of the directories and files can be found in htmap/names.py. They are all stored inside the map’s directory.

The itemdata for each map is stored as a JSON-formatted list of dictionaries. The itemdata is used to call
htcondor.Submit.queue_with_itemdata() during map creation.

The submit object for each map is stored as a JSON-formatted dictionary.

The number of components is stored as a single string-ified integer in the file.

The cluster IDs of each HTCondor cluster job associated with the map are stored as newline-separated plain-
text strings.

The event log for each HTCondor cluster job is routed to a file inside the map directory.

For generic data, like the inputs and outputs of mapped functions, HTMap uses cloudpickle. The indi-
vidual inputs and outputs for each component are stored in files named by the component index.

The functions that handle storing and loading these various formats are in the htmap.htio submodule. All
IO should go through methods defined in that submodule, with the idea that if it becomes necessary to swap
out some of the internal implementations of those methods, the changes will be isolated to that module.

htmap.htio.save_object(obj, path)
Serialize a Python object (including “objects”, like functions) to a file at the given path.

Return type
None

htmap.htio.load_object(path)
Deserialize an object from the file at the given path.

Return type
Any

htmap.htio.load_objects(path)
Deserialize a stream of objects from the file at the given path.

Return type
Iterator[Any]

htmap.htio.save_func(map_dir, func)
Save the mapped function to the map directory.

Return type
None

htmap.htio.save_inputs(map_dir, args_and_kwargs)
Save the arguments to the mapped function to the map’s input directory.

Return type
None

11.1. HTMap Innards 133

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/typing.html#typing.Iterator
https://docs.python.org/3/library/typing.html#typing.Any
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None


htmap Documentation, Release 0.6.1

htmap.htio.save_num_components(map_dir, num_components)
Save the number of components in a map.

Return type
None

htmap.htio.load_num_components(map_dir)
Load the number of components in a map.

Return type
int

htmap.htio.append_cluster_id(map_dir, cluster_id)
Add a cluster ID to a map.

Return type
None

htmap.htio.load_cluster_ids(map_dir)
Load the cluster IDs for a map.

Return type
List[int]

htmap.htio.save_submit(map_dir, submit)
Save a dictionary that represents the map’s htcondor.Submit object.

Return type
None

htmap.htio.load_submit(map_dir)
Load an htcondor.Submit object that was saved using save_submit().

Return type
Submit

htmap.htio.save_itemdata(map_dir, itemdata)
Save the map’s itemdata as a list of JSON dictionaries.

Return type
None

htmap.htio.load_itemdata(map_dir)
Load itemdata that was saved using save_itemdata().

Return type
List[dict]

134 Chapter 11. Contributing and Developing

https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/constants.html#None
https://docs.python.org/3/library/typing.html#typing.List
https://docs.python.org/3/library/stdtypes.html#dict


htmap Documentation, Release 0.6.1

11.2 Development Environment

11.2.1 Repository Setup

You can get HTMap’s source code by cloning the git repository: git clone https://github.com/
htcondor/htmap. If you are planning on submitting a pull request, you should instead clone your own
fork of the repository.

After cloning the repository, install the development dependencies using your Python package manager.
If you are using pip, you would run pip install -e .[tests,docs] from the repository root. The
dependencies (development and otherwise) are listed in setup.cfg.

Warning: The HTCondor Python bindings are currently only available via PyPI on Linux. On Windows
you must install HTCondor itself to get them. On Mac, you’re out of luck. Install pre-commit manually,
then use the development container to run the test suite/build the documentation.

One of the dependencies you just installed is pre-commit. pre-commit runs a series of checks whenever
you try to commit. You should “install” the pre-commit hooks by running pre-commit install in the
repository root. You can run the checks manually at any time by running pre-commit.

Do not commit to the repository before running pre-commit install !

11.2.2 Development Container

HTMap’s test suite relies on a properly set-up environment. The simplest way to get that environment is to
use the Dockerfile in docker/Dockerfile to produce a development container. The repository includes a
bash script named dr (docker run) in the repository root that will let you quickly build and execute commands
in a development container.

Attention: The dr script bind-mounts your local copy of the repository into the container. Any edits
you make outside the container will be reflected inside (and vice versa).

Anything you pass to dr will be executed inside the container. By default (i.e., if you pass nothing) you will
get a bash shell. The initial working directory is the htmap repository inside the container.

11.2.3 Running the Test Suite

The best way to run the test suite is to run pytest inside the development container:

$ ./dr
# ...
mapper@161b6af91d72:~/htmap$ pytest

11.2. Development Environment 135

https://help.github.com/en/github/getting-started-with-github/fork-a-repo


htmap Documentation, Release 0.6.1

The test suite can be executed in parallel by passing the -n option. pytest -n 4 seems to be a good
number for laptops, while desktops can probably handle -n 10. See pytest-xdist for more details on parallel
execution. The test suite is very slow when run serially; we highly recommend running with a large number
of workers.

See the pytest docs or run pytest --help for more information on pytest itself.

11.2.4 Building the Docs

HTMap’s documentation is served by Read the Docs, which builds the docs as well. The docs are deployed
automatically on each commit to master, so they can be updated independently of a version release for minor
adjustments.

It can be helpful to build the docs locally during development. We recommend using sphinx-autobuild
to serve the documentation via a local webserver and automatically rebuild the documentation when changes
are made to the package source code or the documentation itself. To run the small wrapper script we have
written around sphinx-autobuild, from inside or outside the development container run,

$ ./dr
# ...
mapper@161b6af91d72:~/htmap$ docs/autobuild.sh
NOTE: CONNECT TO http://127.0.0.1:8000 NOT WHAT SPHINX-AUTOBUILD TELLS YOU
# trimmed; visit URL above

Note the startup message: ignore the link that sphinx-autobuild gives you, and instead go to http://127.
0.0.1:8000 to see the built documentation.

11.2.5 Binder Integration

HTMap’s tutorials can be served via Binder. The tutorials are run inside a specialized Docker container (not
the development container). To test whether the Binder container is working properly, run the binder/run.
sh script from the repository root (i.e., not from inside the development container):

$ ./binder/run.sh

It will give you a link to enter into your web browser that will land you in the same Jupyter environment you
would get on Binder.

The binder/edit.sh script will do the same, but also bind-mount the tutorials into the container so that
they can be edited in the Jupyter environment.

When preparing a release, run binder/exec.sh and commit the results into the repository.

136 Chapter 11. Contributing and Developing

https://pypi.org/project/pytest-xdist/
https://docs.pytest.org/
https://readthedocs.org/
http://127.0.0.1:8000
http://127.0.0.1:8000
https://mybinder.org/


htmap Documentation, Release 0.6.1

11.3 How to Release a New HTMap Version

To release a new version of HTMap:

1. Run binder/exec.sh, check that they executed correctly by loading them up in a Jupyter session,
and commit the resulting executed tutorial notebooks into the repository.

2. Make sure that the version PR actually bumps the version in setup.cfg.

3. Merge the version PR into master via GitHub.

4. Make a GitHub release from https://github.com/htcondor/htmap/releases, based on master. Name it
exactly vX.Y.Z, and link to the release notes for that version (like https://htmap.readthedocs.io/en/
latest/versions/vX_Y_Z.html ) in the description (the page will not actually exist yet).

5. Delete anything in the dist/ directory in your copy of the repository.

6. On your machine, make sure master is up-to-date, then run python3 setup.py sdist
bdist_wheel to create the source distribution and the wheel.

7. Install Twine: pip install twine.

8. Upload to PyPI: python3 -m twine upload dist/*. You will be prompted for your PyPI login.

HTMap’s default Docker image is defined by the docker/ directory in this repository. It is built automatically
by Docker Hub, see the builds page. The Binder-served tutorials also use an image built by Docker Hub: see
here, and are defined by the binder/ directory in this repository.

11.3. How to Release a New HTMap Version 137

https://github.com/htcondor/htmap/releases
https://htmap.readthedocs.io/en/latest/versions/vX_Y_Z.html
https://htmap.readthedocs.io/en/latest/versions/vX_Y_Z.html
https://hub.docker.com/repository/docker/htcondor/htmap-exec/builds
https://hub.docker.com/repository/docker/htcondor/htmap-tutorials


htmap Documentation, Release 0.6.1

138 Chapter 11. Contributing and Developing



PYTHON MODULE INDEX

h
htmap.exceptions, 91
htmap.htio, 133

139



htmap Documentation, Release 0.6.1

140 Python Module Index



INDEX

Symbols
__call__() (htmap.MapBuilder method), 68
__getitem__() (htmap.Map method), 70
__len__() (htmap.Map method), 70
__len__() (htmap.MapBuilder method), 69
--all

htmap-clean command line option, 96
htmap-errors command line option, 99
htmap-hold command line option, 99
htmap-pause command line option, 101
htmap-reasons command line option,

101
htmap-release command line option,

102
htmap-remove command line option, 103
htmap-rerun-map command line option,

104
htmap-resume command line option, 104
htmap-vacate command line option, 109
htmap-wait command line option, 109

--color
htmap-components command line option,

97
htmap-status command line option, 106

--destination
htmap-autocompletion command line

option, 96
--force

htmap-autocompletion command line
option, 96

htmap-remove command line option, 103
--format

htmap-status command line option, 106
--limit

htmap-errors command line option, 99
--live

htmap-status command line option, 106

--meta
htmap-status command line option, 106

--no-color
htmap-components command line option,

97
htmap-status command line option, 106

--no-live
htmap-status command line option, 106

--no-meta
htmap-status command line option, 106

--no-state
htmap-status command line option, 106

--no-view
htmap-logs command line option, 100

--pattern
htmap-errors command line option, 99
htmap-hold command line option, 99
htmap-pause command line option, 101
htmap-reasons command line option,

101
htmap-release command line option,

102
htmap-remove command line option, 103
htmap-rerun-map command line option,

104
htmap-resume command line option, 104
htmap-tags command line option, 108
htmap-vacate command line option, 109
htmap-wait command line option, 109

--shell
htmap-autocompletion command line

option, 96
--state

htmap-status command line option, 106
--status

htmap-components command line option,
97

141



htmap Documentation, Release 0.6.1

--timeout
htmap-stderr command line option, 107
htmap-stdout command line option, 107

--unit
htmap-edit-disk command line option,

98
htmap-edit-memory command line

option, 98
--user

htmap-settings command line option,
106

--verbose
htmap command line option, 95

--version
htmap command line option, 95

--view
htmap-logs command line option, 100

-p
htmap-errors command line option, 99
htmap-hold command line option, 99
htmap-pause command line option, 101
htmap-reasons command line option,

101
htmap-release command line option,

102
htmap-remove command line option, 103
htmap-rerun-map command line option,

104
htmap-resume command line option, 104
htmap-tags command line option, 108
htmap-vacate command line option, 109
htmap-wait command line option, 109

-v
htmap command line option, 95

A
append() (htmap.settings.Settings method), 90
append_cluster_id() (in module htmap.htio),

134

B
build_map() (htmap.MappedFunction method), 70
build_map() (in module htmap), 68

C
CannotRerunComponents, 92
CannotRetagMap, 92
CannotTransplantPython, 92

checkpoint() (in module htmap), 85
clean() (in module htmap), 86
COMPLETED (htmap.ComponentStatus attribute), 77
COMPONENT

htmap-stderr command line option, 107
htmap-stdout command line option, 107

component (htmap.ComponentError attribute), 79
component_statuses (htmap.Map property), 73
ComponentError (class in htmap), 79
ComponentHold (class in htmap), 80
COMPONENTS

htmap-rerun-components command line
option, 103

components (htmap.Map property), 71
components_by_status() (htmap.Map method),

73
ComponentStatus (class in htmap), 77
CorruptEventLog, 92
count() (htmap.Map method), 77
created (htmap.Transplant attribute), 88

D
DISK

htmap-edit-disk command line option,
98

display_statuses() (htmap.ComponentStatus
class method), 78

E
EmptyMap, 92
error_reports() (htmap.Map method), 74
ERRORED (htmap.ComponentStatus attribute), 77
errors (htmap.Map property), 74
exception_msg (htmap.ComponentError at-

tribute), 79
exists (htmap.Map property), 75
ExpectedError, 92

F
from_settings() (htmap.settings.Settings class

method), 90

G
get() (htmap.Map method), 71
get() (htmap.MapOutputFiles method), 78
get() (htmap.MapStdErr method), 78
get() (htmap.MapStdOut method), 78
get() (htmap.settings.Settings method), 89

142 Index



htmap Documentation, Release 0.6.1

get_err() (htmap.Map method), 72
get_tags() (in module htmap), 85

H
hash (htmap.Transplant attribute), 88
HELD (htmap.ComponentStatus attribute), 77
hold() (htmap.Map method), 75
hold_report() (htmap.Map method), 74
holds (htmap.Map property), 74
htmap command line option

--verbose, 95
--version, 95
-v, 95

htmap.exceptions
module, 91

htmap.htio
module, 133

htmap-autocompletion command line
option

--destination, 96
--force, 96
--shell, 96

htmap-clean command line option
--all, 96

htmap-components command line option
--color, 97
--no-color, 97
--status, 97
TAG, 97

htmap-edit-disk command line option
--unit, 98
DISK, 98
TAG, 98

htmap-edit-memory command line option
--unit, 98
MEMORY, 98
TAG, 98

htmap-errors command line option
--all, 99
--limit, 99
--pattern, 99
-p, 99
TAGS, 99

htmap-hold command line option
--all, 99
--pattern, 99
-p, 99
TAGS, 100

htmap-logs command line option
--no-view, 100
--view, 100

htmap-path command line option
TAG, 101

htmap-pause command line option
--all, 101
--pattern, 101
-p, 101
TAGS, 101

htmap-reasons command line option
--all, 101
--pattern, 101
-p, 101
TAGS, 102

htmap-release command line option
--all, 102
--pattern, 102
-p, 102
TAGS, 102

htmap-remove command line option
--all, 103
--force, 103
--pattern, 103
-p, 103
TAGS, 103

htmap-rerun-components command line
option

COMPONENTS, 103
TAG, 103

htmap-rerun-map command line option
--all, 104
--pattern, 104
-p, 104
TAGS, 104

htmap-resume command line option
--all, 104
--pattern, 104
-p, 104
TAGS, 105

htmap-retag command line option
NEW, 105
TAG, 105

htmap-set command line option
SETTING, 105
VALUE, 105

htmap-settings command line option
--user, 106

Index 143



htmap Documentation, Release 0.6.1

htmap-status command line option
--color, 106
--format, 106
--live, 106
--meta, 106
--no-color, 106
--no-live, 106
--no-meta, 106
--no-state, 106
--state, 106

htmap-stderr command line option
--timeout, 107
COMPONENT, 107
TAG, 107

htmap-stdout command line option
--timeout, 107
COMPONENT, 107
TAG, 107

htmap-tags command line option
--pattern, 108
-p, 108

htmap-transplants-remove command line
option

INDEX, 108
htmap-vacate command line option

--all, 109
--pattern, 109
-p, 109
TAGS, 109

htmap-wait command line option
--all, 109
--pattern, 109
-p, 109
TAGS, 109

HTMapException, 91

I
IDLE (htmap.ComponentStatus attribute), 77
INDEX

htmap-transplants-remove command
line option, 108

index() (htmap.Map method), 77
InsufficientHTCondorVersion, 92
InvalidOutputStatus, 92
InvalidTag, 91
is_active (htmap.Map property), 71
is_done (htmap.Map property), 71
is_transient (htmap.Map property), 77

iter() (htmap.Map method), 72
iter_as_available() (htmap.Map method), 72
iter_as_available_with_inputs()

(htmap.Map method), 72
iter_inputs() (htmap.Map method), 73
iter_with_inputs() (htmap.Map method), 72

L
load() (htmap.Map class method), 70
load() (htmap.settings.Settings class method), 90
load() (htmap.Transplant class method), 88
load() (in module htmap), 86
load_cluster_ids() (in module htmap.htio), 134
load_itemdata() (in module htmap.htio), 134
load_maps() (in module htmap), 86
load_num_components() (in module htmap.htio),

134
load_object() (in module htmap.htio), 133
load_objects() (in module htmap.htio), 133
load_submit() (in module htmap.htio), 134
local_data (htmap.Map property), 74

M
Map (class in htmap), 70
map (htmap.ComponentError attribute), 79
map (htmap.MapBuilder property), 69
map() (htmap.MappedFunction method), 69
map() (in module htmap), 67
MapBuilder (class in htmap), 68
MapComponentError, 92
MapComponentHeld, 92
MapOptions (class in htmap), 81
MapOutputFiles (class in htmap), 78
mapped() (in module htmap), 69
MappedFunction (class in htmap), 69
MapStdErr (class in htmap), 78
MapStdOut (class in htmap), 78
MapWasRemoved, 92
MEMORY

htmap-edit-memory command line
option, 98

memory_usage (htmap.Map property), 74
merge() (htmap.MapOptions class method), 82
MisalignedInputData, 92
MissingSetting, 91
module

htmap.exceptions, 91
htmap.htio, 133

144 Index



htmap Documentation, Release 0.6.1

N
NEW

htmap-retag command line option, 105
node_info (htmap.ComponentError attribute), 79
NoMapYet, 91

O
output_files (htmap.Map property), 77
OutputNotFound, 91

P
packages (htmap.Transplant attribute), 88
path (htmap.Transplant attribute), 88
pause() (htmap.Map method), 75
prepend() (htmap.settings.Settings method), 90
python_info (htmap.ComponentError attribute),

80

R
register_delivery_method() (in module

htmap), 88
release() (htmap.Map method), 75
remove() (htmap.Map method), 74
remove() (htmap.Transplant method), 89
remove() (in module htmap), 86
REMOVED (htmap.ComponentStatus attribute), 77
replace() (htmap.settings.Settings method), 90
report() (htmap.ComponentError method), 80
rerun() (htmap.Map method), 76
RESERVED_KEYS (htmap.MapOptions attribute), 82
ReservedOptionKeyword, 92
resume() (htmap.Map method), 75
retag() (htmap.Map method), 76
RUNNING (htmap.ComponentStatus attribute), 77
runtime (htmap.Map property), 74

S
save() (htmap.settings.Settings method), 90
save_func() (in module htmap.htio), 133
save_inputs() (in module htmap.htio), 133
save_itemdata() (in module htmap.htio), 134
save_num_components() (in module htmap.htio),

133
save_object() (in module htmap.htio), 133
save_submit() (in module htmap.htio), 134
scratch_dir_contents (htmap.ComponentError

attribute), 80
set_disk() (htmap.Map method), 76

set_memory() (htmap.Map method), 76
SETTING

htmap-set command line option, 105
Settings (class in htmap.settings), 89
size (htmap.Transplant attribute), 88
stack_summary (htmap.ComponentError at-

tribute), 80
starmap() (htmap.MappedFunction method), 69
starmap() (in module htmap), 67
status() (htmap.Map method), 74
status() (in module htmap), 85
status_csv() (in module htmap), 87
status_json() (in module htmap), 87
stderr (htmap.Map property), 77
stdout (htmap.Map property), 77
SUSPENDED (htmap.ComponentStatus attribute), 77

T
TAG

htmap-components command line option,
97

htmap-edit-disk command line option,
98

htmap-edit-memory command line
option, 98

htmap-path command line option, 101
htmap-rerun-components command line

option, 103
htmap-retag command line option, 105
htmap-stderr command line option, 107
htmap-stdout command line option, 107

TagAlreadyExists, 91
TagNotFound, 92
TAGS

htmap-errors command line option, 99
htmap-hold command line option, 100
htmap-pause command line option, 101
htmap-reasons command line option,

102
htmap-release command line option,

102
htmap-remove command line option, 103
htmap-rerun-map command line option,

104
htmap-resume command line option, 105
htmap-vacate command line option, 109
htmap-wait command line option, 109

TimeoutError, 91

Index 145



htmap Documentation, Release 0.6.1

to_dict() (htmap.settings.Settings method), 89
transfer_output_files() (in module htmap), 84
TransferPath (class in htmap), 83
Transplant (class in htmap), 88
transplant_info() (in module htmap), 89
transplants() (in module htmap), 88

U
UNKNOWN (htmap.ComponentStatus attribute), 77
UnknownPythonDeliveryMethod, 92
UNMATERIALIZED (htmap.ComponentStatus at-

tribute), 77

V
vacate() (htmap.Map method), 75
VALUE

htmap-set command line option, 105
version() (in module htmap), 93
version_info() (in module htmap), 93

W
wait() (htmap.Map method), 71

146 Index


	Installation
	Tutorials
	First Steps
	Setup
	The Problem
	The Solution

	Basic Mapping
	Tags
	Working with Maps
	Map Builders

	Working with Files
	Multiple Files

	Map Options
	Requesting Resources
	The Kitchen Sink

	Advanced Mapping
	Starmap
	Mapped Functions
	Non-Primitive Function Arguments

	Error Handling
	Holds
	Debugging holds

	Execution Errors
	Standard Output and Error

	Advanced Tutorials
	Docker Image Cookbook
	Can I use HTMap’s default image?
	I depend on Python packages that aren’t in the Anaconda distribution
	I don’t need most of the Anaconda distribution and want to use a lighter-weight base image
	I want to use a Python package that’s not on PyPI or Anaconda
	I want to use a base image that doesn’t come with Python pre-installed
	I want to build an image for use on the Open Science Grid

	Output Files
	Transferring Output to Other Places
	Wrapping External Programs
	Checkpointing Maps
	Concrete Example
	Checkpointing Strategy
	Caveats

	Using HTMap on the Open Science Grid


	Using HTCondor with HTMap
	Component and Job States
	Requesting Resources
	GPUs
	Command Line Tools

	Tips and Tricks
	Separate Job Submission/Monitoring/Collection
	Use the CLI
	Conditional Execution on Cluster vs. Submit
	Functional programming
	Filter
	Groupby


	FAQ
	How do I abort a job?
	How do I only process completed jobs?
	Is it possible to use Dask with HTCondor? How does it compare with HTMap?
	I’m getting a weird error from cloudpickle.load?
	I’m getting an error about a job being held. What should I do?

	API Reference
	Tags and Map Persistence
	Mapping Functions
	Map Builder
	MappedFunction
	Map
	Error Handling
	MapOptions
	File Transfer
	Checkpointing
	Management
	Programmatic Status Messages

	Delivery Methods
	Transplant Installs

	Settings
	Logging
	Exceptions
	Version

	CLI Reference
	htmap
	autocompletion
	clean
	components
	edit
	disk
	memory

	errors
	hold
	logs
	path
	pause
	reasons
	release
	remove
	rerun
	components
	map

	resume
	retag
	set
	settings
	status
	stderr
	stdout
	tags
	transplants
	info
	remove

	vacate
	version
	wait


	Settings
	Settings
	MAP_OPTIONS
	HTCONDOR
	DOCKER
	SINGULARITY
	TRANSPLANT


	Dependency Management
	Run Inside a Docker Container
	Run Inside a Singularity Container
	Run With a Shared Python Installation
	Assume Dependencies are Present
	Transplant Existing Python Install

	Version History
	v0.6.1
	Known Issues

	v0.6.0
	New Features/Improvements
	Changed/Deprecated Features
	Bug Fixes
	Known Issues

	v0.5.1
	New Features
	Deprecated Features
	Bug Fixes
	Known Issues

	v0.5.0
	New Features
	Deprecated Features
	Bug Fixes
	Known Issues

	v0.4.4
	New Features
	Bug Fixes
	Known Issues

	v0.4.3
	New Features
	Bug Fixes
	Known Issues

	v0.4.2
	New Features
	Bug Fixes
	Known Issues

	v0.4.1
	New Features
	Bug Fixes
	Known Issues

	v0.4.0
	New Features
	Bug Fixes
	Known Issues

	v0.3.2
	New Features
	Bug Fixes
	Known Issues

	v0.3.1
	New Features
	Bug Fixes
	Known Issues

	v0.3.0
	New Features
	Bug Fixes
	Known Issues


	Contributing and Developing
	HTMap Innards
	Overview
	Guiding Principles
	Moving Things Around
	The run Subdirectory
	Data Model
	Serializing and Deserializing Data

	Development Environment
	Repository Setup
	Development Container
	Running the Test Suite
	Building the Docs
	Binder Integration

	How to Release a New HTMap Version

	Python Module Index
	Index

